The OpenGL Graphics System:

A Specification
(Version 1.4)

Mark Segal
Kurt Akeley

Editor (version 1.1): Chris Frazier
Editor (versions 1.2, 1.2.1, 1.3, 1.4): Jon Leech

Copyright(©) 1992-2002 Silicon Graphics, Inc.

This document contains unpublished information of
Silicon Graphics, Inc.

This document is protected by copyright, and contains information proprietary to
Silicon Graphics, Inc. Any copying, adaptation, distribution, public performance,
or public display of this document without the express written consent of Silicon
Graphics, Inc. is strictly prohibited. The receipt or possession of this document
does not convey any rights to reproduce, disclose, or distribute its contents, or to
manufacture, use, or sell anything that it may describe, in whole or in part.

U.S. Government Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions set forth
in FAR 52.227.19(c)(2) or subparagraph (c)(1)(ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013 and/or in similar or succes-
sor clauses in the FAR or the DOD or NASA FAR Supplement. Unpublished rights
reserved under the copyright laws of the United States. Contractor/manufacturer is
Silicon Graphics, Inc., 1600 Amphitheatre Parkway, Mountain View, CA 94043.

OpenGL is a registered trademark of Silicon Graphics, Inc.
Unix is a registered trademark of The Open Group.
The "X” device and X Windows System are trademarks of

The Open Group.

Contents

1 Introduction 1
1.1 Formatting of Optional Features 1
1.2 Whatis the OpenGL Graphics System? 1
1.3 ProgrammersViewofOpenGL 2
1.4 Implementor’s ViewofOpenGL 2
15 OurView 3

2 OpenGL Operation 4
21 OpenGLFundamentals 4

2.1.1 Floating-Point Computation 6
22 GLState e 6
23 GLCommandSyntax 7
24 BasicGLOperation. 10
25 GLErrors 11
2.6 Begin/End Paradigm, 12
26.1 BeginandEndObjects 13
2.6.2 PolygonEdges 18
2.6.3 GL Commands withiBeginEnd 19
2.7 \Vertex Specification 19
2.8 VertexX Arrays o e e 23
29 Rectangles. 30
2.10 Coordinate Transformations 31
2.10.1 Controlling the Viewport 32
2.10.2 Matrices. o 33
2.10.3 Normal Transformation. 38
2.10.4 Generating Texture Coordinates 40
2.11 Clipping o o 42
2.12 Current Raster Position 44
2.13 Colorsand Coloring A7

i CONTENTS
2131 Lighting. 48
2.13.2 Lighting Parameter Specification 53
2.13.3 ColorMaterial 54
2.13.4 LightingState 57
2.13.5 ColoriIndexLighting 57
2.13.6 ClampingorMasking 58
2.13.7 Flatshading 58
2.13.8 Color and Texture Coordinate Clipping 59
2.13.9 FinalColorProcessing 60

3 Rasterization 61

3.1 Invariance e 63
3.2 Antialiasing 63
3.21 Multisampling, 64
3.3 Points 66
3.3.1 Basic Point Rasterization 67
3.3.2 Point RasterizationState 70
3.3.3 Point Multisample Rasterization 70
34 LineSegments10
3.4.1 Basic Line Segment Rasterization 71
3.4.2 OtherLine SegmentFeatures. 73
3.4.3 Line RasterizationState 76
3.4.4 Line Multisample Rasterization 76
35 Polygons 77
3.5.1 Basic Polygon Rasterization 77
3.5.2 Stippling 79
3.5.3 Antialiasing. 80
3.5.4 Options Controlling Polygon Rasterization 80
355 DepthOffset 81
3.5.6 Polygon Multisample Rasterization 82
3.5.7 Polygon Rasterization State 83
3.6 PixelRectangles. 83
3.6.1 PixelStorageModes 83
3.6.2 ThelmagingSubset 84
3.6.3 PixelTransferModes 85
3.6.4 Rasterization of Pixel Rectangles 95
3.6.5 Pixel Transfer Operations 106
3.6.6 Pixel Rectangle Multisample Rasterization 116
3.7 Bitmaps 116
3.8 Texturing 118

Version 1.4 - July 24, 2002

CONTENTS

3.8.1 Texture Image Specification 119
3.8.2 Alternate Texture Image Specification Commands . . 123
3.8.3 Compressed Texturelmages 132
3.8.4 Texture Parameters 135
3.8.5 Depth Component Textures 136
3.8.6 Cube Map Texture Selection 136
3.8.7 TextureWrapModes 138
3.8.8 Texture Minification 140
3.8.9 Texture Magnification 146
3.8.10 Texture Completeness 146
3.8.11 Texture State and Proxy State 148
3.8.12 TextureObjects 149
3.8.13 Texture Environments and Texture Functions 152
3.8.14 Texture ComparisonModes 157
3.8.15 Texture Application. 158

39 ColorSum 160
310 FOg e 160
3.11 Antialiasing Application 162
3.12 Multisample PointFade 162
4 Per-Fragment Operations and the Framebuffer 163
4.1 Per-FragmentOperations 164
4.1.1 PixelOwnershipTest 164
412 ScissorTest 165
4.1.3 Multisample Fragment Operations 165
414 AlphaTest, 166
415 StencilTest 167
416 DepthBufferTest. 168
417 Blending 169
4.1.8 Dithering 172
4.1.9 LogicalOperation 172
4.1.10 Additional Multisample Fragment Operations 174

4.2 Whole Framebuffer Operations 174
4.2.1 Selecting a Buffer for Writing 175
4.2.2 Fine Control of Buffer Updates 176
4.2.3 ClearingtheBuffers 177
4.2.4 The Accumulation Buffer 179

4.3 Drawing, Reading, and CopyingPixels 180
4.3.1 Writing to the Stencil Buffer 180
43.2 ReadingPixels, 180

Version 1.4 - July 24, 2002

4.3.3 CopyingPixels
4.3.4 Pixel Draw/Read State

Special Functions

51 Evaluators
52 Selection,
53 Feedback
54 DisplaylLists
55 FlushandFinish.
56 Hints.

State and State Requests

6.1 QueryingGLState
6.1.1 SimpleQueries
6.1.2 DataConversions
6.1.3 Enumerated Queries
6.1.4 TextureQueries.
6.1.5 StippleQuery
6.1.6 ColorMatrixQuery.
6.1.7 ColorTableQuery
6.1.8 ConvolutionQuery
6.1.9 HistogramQuery
6.1.10 MinmaxQuery
6.1.11 Pointer and String Queries
6.1.12 Saving and Restoring State

6.2 StateTables

Invariance

A.l Repeatability
A.2 Multi-pass Algorithms
A3 InvarianceRules.
A4 WhatAllThisMeans

Corollaries

Version 1.1

C.1 VertexArray.
C.2 PolygonOffset
C.3 LogicalOperation
C.4 TexturelmageFormats

Version 1.4 - July 24, 2002

CONTENTS

CONTENTS

D

%

C.5 Texture Replace Environment. 255
C.6 TextureProxies, 256
C.7 Copy Texture and Subtexture 256
C.8 TextureObjects 256
C.9 OtherChanges 256
C.10 Acknowledgements 00 257
Version 1.2 259
D.1 Three-Dimensional Texturing 259
D.2 BGRAPixelFormats 259
D.3 PackedPixel Formats 260
D.4 NormalRescaling 260
D.5 Separate SpecularColor 260
D.6 Texture Coordinate Edge Clamping 260
D.7 Texture Level of Detail Control 261
D.8 \ertex Array Draw ElementRange 261
D.9 ImagingSubset 261
D.9.1 ColorTables 261
D.9.2 Convolution. 262
D.9.3 ColorMatrix 262
D.9.4 Pixel Pipeline Statistics 263
D.9.5 ConstantBlendColor. 263
D.9.6 NewBlending Equations 263
D.10 Acknowledgementso 263
Version 1.2.1 267
Version 1.3 268
F.1 CompressedTextures 268
F.2 CubeMapTextures 268
F.3 Multisample 269
F.4 Multitexture 269
F.5 Texture Add EnvironmentMode 270
F.6 Texture Combine EnvironmentMode 270
F.7 Texture Dot3 EnvironmentMode 270
F.8 TextureBorderClamp 270
F.9 TransposeMatrix, 271
F.10 Acknowledgements, 271

Version 1.4 - July 24, 2002

Vi CONTENTS
G Version 1.4 276
G.1 Automatic Mipmap Generation 276
G.2 BlendSquaring e 276
G.3 ChangestothelmagingSubset 277
G.4 Depth Texturesand Shadows 277
G.5 FogCoordinate, 277
G.6 Multiple Draw Arrays o i i e e 277
G.7 PointParameters e 278
G.8 SecondaryColor 278
G.9 SeparateBlendFunctions 278
G.l0StencilWrap e e 278
G.11 Texture Crossbar EnvironmentMode 278
G.l12 Texture LODBias ittt 279
G.13 Texture Mirrored Repeat 279
G.14 Window Raster Position 279
G.15 Acknowledgements 279
H ARB Extensions 282
H.1 Naming Conventions 282
H.2 Promoting Extensions to Core Features 283
H.3 Multitexture 283
H.4 Transpose Matrix 283
H5 Multisample 283
H.6 Texture Add EnvironmentMode 283
H.7 CubeMapTextures 284
H.8 CompressedTextures 284
H.9 TextureBorderClamp 284
H.10 Point Parameters 284
H.11 VertexBlend 284
H.12 Matrix Palette, 284
H.13 Texture Combine EnvironmentMode 285
H.14 Texture Crossbar EnvironmentMode 285
H.15 Texture Dot3 EnvironmentMode 285
H.16 Texture Mirrored Repeat 285
H.17 Depth Texture i 285
H.18 Shadow e 285
H.19 Shadow Ambient 285
H.20 Window Raster Position 286
H.21 Vertex Programming 286

Version 1.4 - July 24, 2002

CONTENTS vii

Index of OpenGL Commands 287

Version 1.4 - July 24, 2002

List of Figures

2.1
2.2

2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2
4.3

51
5.2

Block diagramofthe GL. 10
Creation of a processed vertex from a transformed vertex and cur-
rentvalues. 13
Primitive assembly and processing. 13
Triangle strips, fans, and independent triangles. 16
Quadrilateral strips and independent quadrilaterals. 17
Vertex transformation sequence. 31
Currentraster position. 45
Processingof RGBAcolors. a7
Processing of colorindices. 47
ColorMaterial operation. 54
Rasterization. 61
Rasterization of non-antialiased wide points. 6.7
Rasterization of antialiased wide points. 68
Visualization of Bresenham’s algorithm. 71
Rasterization of non-antialiased wide lines. 74
The region used in rasterizing an antialiased line segment. . . 75
Operation oDrawPixels. 95
Selecting a subimage fromanimage 99
A bitmap and its associated parameters. 117
A texture image and the coordinates used to accessit. 128.
Multitexture pipeline. L. 159
Per-fragment operations. 164
OperationoReadPixels 180
Operation oCopyPixels 184
Map Evaluation. 190
Feedbacksyntax. 199

List of Tables

21 GLcommandsuffixes. 8
22 GLdatatypes 9
2.3 SummaryofGLerrors 12
2.4 \Vertex array sizes (values per vertex) and data types 24,
2.5 \Variables that direct the executionloferleavedArrays. 29
2.6 Componentconversions.u... 49
2.7 Summary of lighting parameters. 50
2.8 Correspondence of lighting parameter symbols to names. . . . 55.
2.9 Polygon flatshading color selection. 59
3.1 PixelStoreparameters. o o 84
3.2 PixelTransfer parameters. 86
3.3 PixelMap parameters. 87
3.4 Colortablenames. 88
3.5 DrawPixelsandReadPixelstypes.. 97
3.6 DrawPixelsandReadPixelsformats. 98
3.7 SwapBytesbhitordering. 99
3.8 Packed pixelformats. 101
3.9 UNSIGNEDBYTEformats. Bit numbers are indicated for each com-
ponent. 101
3.10 UNSIGNEDSHORTormats 102
3.11 UNSIGNEDINT formats 103
3.12 Packed pixel field assignments. 104
3.13 Colortablelookup. 109
3.14 Computation of filtered color components. 110
3.15 Conversion from RGBA and depth pixel components to internal
texture, table, or filter components. 121
3.16 Correspondence of sized internal formats to base internal formag
3.17 Specific compressed internal formats. 123

iX

LIST OF TABLES

3.18 Generic compressed internal formats. 123
3.19 Texture parameters and theirvalues. 137
3.20 Selectionofcubemapimages. 138
3.21 Correspondence of filtered texture components. 153
3.22 Texture functionREPLACEMODULATEandDECAL. 154
3.23 Texture functionBLENDandADD 154
3.24 COMBINBRexture functions. 155
3.25 Arguments foCOMBINERGBfunctions. 156
3.26 Arguments foCOMBINEALPHAfunctions. 156
4.1 Blendingfunctions., 171

4.2 Arguments td.ogicOp and their corresponding operations. . . .173
4.3 Arguments t®rawBuffer and the buffers that they indicate. . . 175

4.4 PixelStoreparameters. L. 182
4.5 ReadPixelsindexmasks. 184
4.6 ReadPixelsGL data types and reversed component conversion for-
mulas. 185
5.1 Values specified by thargettoMap1. 189
5.2 Correspondence of feedback type to number of values per vert&28.
6.1 Texture, table, and filter returnvalues. 209
6.2 Attributegroups 215
6.3 Statevariabletypes 217
6.4 GL Internal begin-end state variables (inaccessible) 219
6.5 Current Values and AssociatedData 220
6.6 VertexArrayData, 221
6.7 VertexArrayData(cont.), 222
6.8 Transformationstate 223
6.9 Coloring e 224
6.10 Lighting (see also Table7fordefaults) 225
6.11 Lighting(cont.) 226
6.12 Rasterization 0o 227
6.13 Multisampling 228
6.14 Textures (state per texture unit and binding point) 229
6.15 Textures (state per texture object) 230
6.16 Textures (state pertextureimage) 231
6.17 Texture Environmentand Generation 232
6.18 PixelOperations. 233
6.19 FramebufferControl, 234

Version 1.4 - July 24, 2002

LIST OF TABLES Xi

6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31

Pixels 235
Pixels(cont.) 236
Pixels(cont.) 237
Pixels(cont.) 238
Pixels(cont.) 239
EvaluatorsGetMap takesamapname) 240
Hints. 241
Implementation DependentValues 242
Implementation Dependent Values (cont.) 243
Implementation Dependent Values (cont.) 244
Implementation Dependent PixelDepths 245
Miscellaneous 246

Version 1.4 - July 24, 2002

Chapter 1

Introduction

This document describes the OpenGL graphics system: what it is, how it acts, and
what is required to implement it. We assume that the reader has at least a rudi-
mentary understanding of computer graphics. This means familiarity with the es-
sentials of computer graphics algorithms as well as familiarity with basic graphics
hardware and associated terms.

1.1 Formatting of Optional Features

Starting with version 1.2 of OpenGL, some features in the specification are consid-
ered optional; an OpenGL implementation may or may not choose to provide them
(see sectioR.6.2).

Portions of the specification which are optional are so described where the
optional features are first defined (see sectidh?). State table entries which are
optional are typese against a gray background

1.2 What is the OpenGL Graphics System?

OpenGL (for “Open Graphics Library”) is a software interface to graphics hard-
ware. The interface consists of a set of several hundred procedures and functions
that allow a programmer to specify the objects and operations involved in produc-
ing high-quality graphical images, specifically color images of three-dimensional
objects.

Most of OpenGL requires that the graphics hardware contain a framebuffer.
Many OpenGL calls pertain to drawing objects such as points, lines, polygons, and
bitmaps, but the way that some of this drawing occurs (such as when antialiasing

2 CHAPTER 1. INTRODUCTION

or texturing is enabled) relies on the existence of a framebuffer. Further, some of
OpenGL is specifically concerned with framebuffer manipulation.

1.3 Programmer’s View of OpenGL

To the programmer, OpenGL is a set of commands that allow the specification of
geometric objects in two or three dimensions, together with commands that control
how these objects are rendered into the framebuffer. For the most part, OpenGL
provides an immediate-mode interface, meaning that specifying an object causes it
to be drawn.

A typical program that uses OpenGL begins with calls to open a window into
the framebuffer into which the program will draw. Then, calls are made to allocate
a GL context and associate it with the window. Once a GL context is allocated,
the programmer is free to issue OpenGL commands. Some calls are used to draw
simple geometric objects (i.e. points, line segments, and polygons), while others
affect the rendering of these primitives including how they are lit or colored and
how they are mapped from the user’s two- or three-dimensional model space to
the two-dimensional screen. There are also calls to effect direct control of the
framebuffer, such as reading and writing pixels.

1.4 Implementor’s View of OpenGL

To the implementor, OpenGL is a set of commands that affect the operation of
graphics hardware. If the hardware consists only of an addressable framebuffer,
then OpenGL must be implemented almost entirely on the host CPU. More typi-
cally, the graphics hardware may comprise varying degrees of graphics accelera-
tion, from a raster subsystem capable of rendering two-dimensional lines and poly-
gons to sophisticated floating-point processors capable of transforming and com-
puting on geometric data. The OpenGL implementor’s task is to provide the CPU
software interface while dividing the work for each OpenGL command between
the CPU and the graphics hardware. This division must be tailored to the available
graphics hardware to obtain optimum performance in carrying out OpenGL calls.

OpenGL maintains a considerable amount of state information. This state con-
trols how objects are drawn into the framebuffer. Some of this state is directly
available to the user: he or she can make calls to obtain its value. Some of it, how-
ever, is visible only by the effect it has on what is drawn. One of the main goals of
this specification is to make OpenGL state information explicit, to elucidate how it
changes, and to indicate what its effects are.

Version 1.4 - July 24, 2002

1.5. OUR VIEW 3

1.5 Our View

We view OpenGL as a state machine that controls a set of specific drawing oper-
ations. This model should engender a specification that satisfies the needs of both
programmers and implementors. It does not, however, necessarily provide a model
for implementation. An implementation must produce results conforming to those
produced by the specified methods, but there may be ways to carry out a particular
computation that are more efficient than the one specified.

Version 1.4 - July 24, 2002

Chapter 2

OpenGL Operation

2.1 OpenGL Fundamentals

OpenGL (henceforth, the “GL”) is concerned only with rendering into a frame-
buffer (and reading values stored in that framebuffer). There is no support for
other peripherals sometimes associated with graphics hardware, such as mice and
keyboards. Programmers must rely on other mechanisms to obtain user input.

The GL drawsprimitivessubject to a number of selectable modes. Each prim-
itive is a point, line segment, polygon, or pixel rectangle. Each mode may be
changed independently; the setting of one does not affect the settings of others
(although many modes may interact to determine what eventually ends up in the
framebuffer). Modes are set, primitives specified, and other GL operations de-
scribed by sendingommandsn the form of function or procedure calls.

Primitives are defined by a group of one or muestices A vertex defines a
point, an endpoint of an edge, or a corner of a polygon where two edges meet. Data
(consisting of positional coordinates, colors, normals, and texture coordinates) are
associated with a vertex and each vertex is processed independently, in order, and
in the same way. The only exception to this rule is if the group of vertices must
be clipped so that the indicated primitive fits within a specified region; in this
case vertex data may be modified and new vertices created. The type of clipping
depends on which primitive the group of vertices represents.

Commands are always processed in the order in which they are received, al-
though there may be an indeterminate delay before the effects of a command are
realized. This means, for example, that one primitive must be drawn completely
before any subsequent one can affect the framebuffer. It also means that queries
and pixel read operations return state consistent with complete execution of all pre-
viously invoked GL commands. In general, the effects of a GL command on either

4

2.1. OPENGL FUNDAMENTALS 5

GL modes or the framebuffer must be complete before any subsequent command
can have any such effects.

In the GL, data binding occurs on call. This means that data passed to a com-
mand are interpreted when that command is received. Even if the command re-
quires a pointer to data, those data are interpreted when the call is made, and any
subsequent changes to the data have no effect on the GL (unless the same pointer
is used in a subsequent command).

The GL provides direct control over the fundamental operations of 3D and 2D
graphics. This includes specification of such parameters as transformation matri-
ces, lighting equation coefficients, antialiasing methods, and pixel update opera-
tors. It does not provide a means for describing or modeling complex geometric
objects. Another way to describe this situation is to say that the GL provides mech-
anisms to describe how complex geometric objects are to be rendered rather than
mechanisms to describe the complex objects themselves.

The model for interpretation of GL commands is client-server. That is, a pro-
gram (the client) issues commands, and these commands are interpreted and pro-
cessed by the GL (the server). The server may or may not operate on the same
computer as the client. In this sense, the GL is “network-transparent.” A server
may maintain a number of Gtontextseach of which is an encapsulation of cur-
rent GL state. A client may choosetonnecto any one of these contexts. Issuing
GL commands when the program is monnectedo acontextresults in undefined
behavior.

The effects of GL commands on the framebuffer are ultimately controlled by
the window system that allocates framebuffer resources. It is the window sys-
tem that determines which portions of the framebuffer the GL may access at any
given time and that communicates to the GL how those portions are structured.
Therefore, there are no GL commands to configure the framebuffer or initialize the
GL. Similarly, display of framebuffer contents on a CRT monitor (including the
transformation of individual framebuffer values by such techniques as gamma cor-
rection) is not addressed by the GL. Framebuffer configuration occurs outside of
the GL in conjunction with the window system; the initialization of a GL context
occurs when the window system allocates a window for GL rendering.

The GL is designed to be run on a range of graphics platforms with varying
graphics capabilities and performance. To accommodate this variety, we specify
ideal behavior instead of actual behavior for certain GL operations. In cases where
deviation from the ideal is allowed, we also specify the rules that an implemen-
tation must obey if it is to approximate the ideal behavior usefully. This allowed
variation in GL behavior implies that two distinct GL implementations may not
agree pixel for pixel when presented with the same input even when run on identi-
cal framebuffer configurations.

Version 1.4 - July 24, 2002

6 CHAPTER 2. OPENGL OPERATION

Finally, command names, constants, and types are prefixed in the Gil, (by
GL, andGL, respectively inC) to reduce name clashes with other packages. The
prefixes are omitted in this document for clarity.

2.1.1 Floating-Point Computation

The GL must perform a number of floating-point operations during the course of
its operation. We do not specify how floating-point numbers are to be represented
or how operations on them are to be performed. We require simply that numbers’
floating-point parts contain enough bits and that their exponent fields are large
enough so that individual results of floating-point operations are accurate to about
1 part in10°. The maximum representable magnitude of a floating-point number
used to represent positional or normal coordinates must be atfZashe maxi-

mum representable magnitude for colors or texture coordinates must be atfeast
The maximum representable magnitude for all other floating-point values must be
atleas®?. 2-0 = 0-z = 0 for any non-infinite and non-NalM. 1-2 = 2-1 = z.
r+0=0+4z = . 0° = 1. (Occasionally further requirements will be specified.)
Most single-precision floating-point formats meet these requirements.

Any representable floating-point value is legal as input to a GL command that
requires floating-point data. The result of providing a value that is not a floating-
point number to such a command is unspecified, but must not lead to GL interrup-
tion or termination. In IEEE arithmetic, for example, providing a negative zero or a
denormalized number to a GL command yields predictable results, while providing
a NaN or an infinity yields unspecified results.

Some calculations require division. In such cases (including implied divisions
required by vector normalizations), a division by zero produces an unspecified re-
sult but must not lead to GL interruption or termination.

2.2 GL State

The GL maintains considerable state. This document enumerates each state vari-
able and describes how each variable can be changed. For purposes of discussion,
state variables are categorized somewhat arbitrarily by their function. Although we
describe the operations that the GL performs on the framebuffer, the framebuffer
is not a part of GL state.

We distinguish two types of state. The first type of state, calleds@iver
state resides in the GL server. The majority of GL state falls into this category.
The second type of state, called @lient state resides in the GL client. Unless
otherwise specified, all state referred to in this document is GL server state; GL

Version 1.4 - July 24, 2002

2.3. GL COMMAND SYNTAX 7

client state is specifically identified. Each instance of a GL context implies one
complete set of GL server state; each connection from a client to a server implies
a set of both GL client state and GL server state.

While an implementation of the GL may be hardware dependent, this discus-
sion is independent of the specific hardware on which a GL is implemented. We are
therefore concerned with the state of graphics hardware only when it corresponds
precisely to GL state.

2.3 GL Command Syntax

GL commands are functions or procedures. Various groups of commands perform
the same operation but differ in how arguments are supplied to them. To conve-
niently accommodate this variation, we adopt a notation for describing commands
and their arguments.

GL commands are formed fromramefollowed, depending on the particular
command, by up to 4 characters. The first character indicates the number of values
of the indicated type that must be presented to the command. The second character
or character pair indicates the specific type of the arguments: 8-bit integer, 16-bit
integer, 32-bit integer, single-precision floating-point, or double-precision floating-
point. The final character, if present,vs indicating that the command takes a
pointer to an array (a vector) of values rather than a series of individual arguments.
Two specific examples come from thlertex command:

void Vertex3f(float x, float v, float z);
and
void Vertex2s\ short Vv[2]);

These examples show the ANSHeclarations for these commands. In general,
a command declaration has the férm

rtypeName{e1234}{e b sifd ub us ui}{ev}
([args,)Targl,..., TargN [, args]);

rtypeis the return type of the function. The bracgs$)(enclose a series of char-
acters (or character pairs) of which one is selectedidicates no character. The
arguments enclosed in brackefargs ,] and[, args]) may or may not be present.

1The declarations shown in this document apply to AlCSLanguages such &++ and Ada
that allow passing of argument type information admit simpler declarations and fewer entry points.

Version 1.4 - July 24, 2002

8 CHAPTER 2. OPENGL OPERATION

| Letter | CorrespondingsL Type |

b byte

s short

i int

f float

d double
ub ubyte
us ushort
ui uint

Table 2.1: Correspondence of command suffix letters to GL argument types. Refer
to Table2.2for definitions of the GL types.

The N argumentsargl throughargN have typeT, which corresponds to one of the
type letters or letter pairs as indicated in Tabl& (if there are no letters, then the
arguments’ type is given explicitly). If the final character is npthenN is given
by the digitl, 2, 3, or4 (if there is no digit, then the number of arguments is fixed).
If the final character iy, then onlyarglis present and it is an array of values
of the indicated type. Finally, we indicate ansigned type by the shorthand of
prepending @ to the beginning of the type name (so that, for instanosjgned
char is abbreviatedichar).

For example,

void Normal3{fd}(T arg);
indicates the two declarations

void Normal3f(float argl, float arg2 float arg3);
void Normal3d(double argl, double arg2 double arg3);

while
void Normal3{fd}v(T arg);
means the two declarations

void Normal3fv(float arg[3]);
void Normal3dv(double arg[3]);

Arguments whose type is fixed (i.e. not indicated by a suffix on the command)
are of one of 14 types (or pointers to one of these). These types are summarized in
Table2.2.

Version 1.4 - July 24, 2002

2.3. GL COMMAND SYNTAX 9

GL Type Minimum | Description

Bit Width
boolean 1 Boolean
byte 8 signed 2’'s complement binary integer
ubyte 8 unsigned binary integer
short 16 signed 2’s complement binary integer
ushort 16 unsigned binary integer
int 32 signed 2’s complement binary integer
uint 32 unsigned binary integer
sizei 32 Non-negative binary integer size
enum 32 Enumerated binary integer value
bitfield 32 Bit field
float 32 Floating-point value
clampf 32 Floating-point value clamped {0, 1]
double 64 Floating-point value
clampd 64 Floating-point value clamped {0, 1]

Table 2.2: GL data types. GL types are not C types. Thus, for example, GL
typeint is referred to asGLint outside this document, and is not necessarily
equivalent to the C typent . An implementation may use more bits than the
number indicated in the table to represent a GL type. Correct interpretation of
integer values outside the minimum range is not required, however.

Version 1.4 - July 24, 2002

10 CHAPTER 2. OPENGL OPERATION

Display
List

Per-Vertex
o Y Operations R : Per-
asteriz—
Evaluator Primitive ation (F)ragmte_mt Framebuffer
Assembly perations
A
Texture
Memory
- Y »-| Pixel

Operations -

Figure 2.1. Block diagram of the GL.

2.4 Basic GL Operation

Figure2.1shows a schematic diagram of the GL. Commands enter the GL on the
left. Some commands specify geometric objects to be drawn while others control
how the objects are handled by the various stages. Most commands may be ac-
cumulated in aisplay listfor processing by the GL at a later time. Otherwise,
commands are effectively sent through a processing pipeline.

The first stage provides an efficient means for approximating curve and sur-
face geometry by evaluating polynomial functions of input values. The next stage
operates on geometric primitives described by vertices: points, line segments, and
polygons. In this stage vertices are transformed and lit, and primitives are clipped
to a viewing volume in preparation for the next stage, rasterization. The rasterizer
produces a series of framebuffer addresses and values using a two-dimensional de-
scription of a point, line segment, or polygon. Eddgmentso produced is fed
to the next stage that performs operations on individual fragments before they fi-
nally alter the framebuffer. These operations include conditional updates into the
framebuffer based on incoming and previously stored depth values (to effect depth
buffering), blending of incoming fragment colors with stored colors, as well as
masking and other logical operations on fragment values.

Finally, there is a way to bypass the vertex processing portion of the pipeline to
send a block of fragments directly to the individual fragment operations, eventually
causing a block of pixels to be written to the framebuffer; values may also be read

Version 1.4 - July 24, 2002

2.5. GL ERRORS 11

back from the framebuffer or copied from one portion of the framebuffer to another.
These transfers may include some type of decoding or encoding.

This ordering is meant only as a tool for describing the GL, not as a strict rule
of how the GL is implemented, and we present it only as a means to organize the
various operations of the GL. Objects such as curved surfaces, for instance, may
be transformed before they are converted to polygons.

2.5 GL Errors

The GL detects only a subset of those conditions that could be considered errors.
This is because in many cases error checking would adversely impact the perfor-
mance of an error-free program.

The command

enum GetError (void);

is used to obtain error information. Each detectable error is assigned a numeric
code. When an error is detected, a flag is set and the code is recorded. Further
errors, if they occur, do not affect this recorded code. W@GetError is called,
the code is returned and the flag is cleared, so that a further error will again record
its code. If a call tadSetError returnsNOQERRORthen there has been no detectable
error since the last call tGetError (or since the GL was initialized).

To allow for distributed implementations, there may be several flag-code pairs.
In this case, after a call t&etError returns a value other thaitQERROReach
subsequent call returns the non-zero code of a distinct flag-code pair (in unspecified
order), until all NONNOQERRORcodes have been returned. When there are no more
nonNQERROFRerror codes, all flags are reset. This scheme requires some positive
number of pairs of a flag bit and an integer. The initial state of all flags is cleared
and the initial value of all codes MOERROR

Table2.3summarizes GL errors. Currently, when an error flag is set, results of
GL operation are undefined only@fUTOFMEMORY¥as occurred. In other cases,
the command generating the error is ignored so that it has no effect on GL state or
framebuffer contents. If the generating command returns a value, it returns zero. If
the generating command modifies values through a pointer argument, no change is
made to these values. These error semantics apply only to GL errors, not to system
errors such as memory access errors. This behavior is the current behavior; the
action of the GL in the presence of errors is subject to change.

Three error generation conditions are implicit in the description of every GL
command. First, if a command that requires an enumerated value is passed a sym-
bolic constant that is not one of those specified as allowable for that command, the

Version 1.4 - July 24, 2002

12 CHAPTER 2. OPENGL OPERATION

Error Description Offending com-
mand ignored?

INVALID _ENUM enum argument out of range Yes

INVALID _VALUE Numeric argument out of range| Yes

INVALID _OPERATION|| Operation illegal in current state Yes
STACKOVERFLOW Command would cause a stackres

overflow

STACKUNDERFLOW || Command would cause a stackres
underflow

OUTOFMEMORY Not enough memory left to exe- Unknown

cute command
TABLETOQLARGE The specified table is too large | Yes

Table 2.3: Summary of GL errors

errorINVALID _[ENUMresults. This is the case even if the argument is a pointer to
a symbolic constant if that value is not allowable for the given command. Second,
if a negative number is provided where an argument of sipei is specified,

the erroriINVALID _VALUEresults. Finally, if memory is exhausted as a side effect
of the execution of a command, the er@yTOFMEMOR¥ay be generated. Oth-
erwise errors are generated only for conditions that are explicitly described in this
specification.

2.6 Begin/End Paradigm

In the GL, most geometric objects are drawn by enclosing a series of coordinate
sets that specify vertices and optionally normals, texture coordinates, and colors
betweenBegirVEnd pairs. There are ten geometric objects that are drawn this
way: points, line segments, line segment loops, separated line segments, polygons,
triangle strips, triangle fans, separated triangles, quadrilateral strips, and separated
quadrilaterals.

Each vertex is specified with two, three, or four coordinates. In addition, a
current norma) multiple current texture coordinate setscurrent color, current
secondary colgr andcurrent fog coordinatenay be used in processing each ver-
tex. Normals are used by the GL in lighting calculations; the current normal is a
three-dimensional vector that may be set by sending three coordinates that specify
it. Texture coordinates determine how a texture image is mapped onto a primitive.
Multiple sets of texture coordinates may be used to specify how multiple texture

Version 1.4 - July 24, 2002

2.6. BEGIN/END PARADIGM 13

images are mapped onto a primitive. The number of texture units supported is
implementation dependent but must be at least two. The number of texture units
supported can be queried with the stsl@€XTEXTUREUNITS.

Primary and secondary colors are associated with each vertex (see 8&ition
Theseassociatedolors are either based on the current color and current secondary
color or produced by lighting, depending on whether or not lighting is enabled.
Texture and fog coordinates are similarly associated with each vertex. Multiple
sets of texture coordinates may be associated with a vertex. Figisammarizes
the association of auxiliary data with a transformed vertex to prodyweaessed
vertex

The current values are part of GL state. Vertices and normals are transformed,
colors may be affected or replaced by lighting, and texture coordinates are trans-
formed and possibly affected by a texture coordinate generation function. The
processing indicated for each current value is applied for each vertex that is sent to
the GL.

The methods by which vertices, normals, texture coordinates, and colors are
sent to the GL, as well as how normals are transformed and how vertices are
mapped to the two-dimensional screen, are discussed later.

Before colors have been assigned to a vertex, the state required by a vertex
is the vertex’s coordinates, the current normal, the current edge flag (see sec-
tion 2.6.9, the current material properties (see secttoh3.2, and the multiple
current texture coordinate sets. Because color assignment is done vertex-by-vertex,
a processed vertex comprises the vertex's coordinates, its edge flag, its assigned
colors, and its multiple texture coordinate sets.

Figure2.3shows the sequence of operations that buildamitive (point, line
segment, or polygon) from a sequence of vertices. After a primitive is formed, it
is clipped to a viewing volume. This may alter the primitive by altering vertex
coordinates, texture coordinates, and colors. In the case of line and polygon prim-
itives, clipping may insert new vertices into the primitive. The vertices defining a
primitive to be rasterized have texture coordinates and colors associated with them.

2.6.1 Begin and End Objects

Begin andEnd require one state variable with eleven values: one value for each
of the ten possibl®egirVEnd objects, and one other value indicating thatBe
gin/End object is being processed. The two relevant commands are

void Begin(enum mode);
void End(void);

Version 1.4 - July 24, 2002

14

CHAPTER 2. OPENGL OPERATION

Vertex
Coordinates In

Y

Figure 2.2. Association of current values with a vertex. The heavy lined boxes
resent GL state. Four texture units are shown; however, multitexturing may suj

a different number of units depending on the implementation.

vertex / normal Transformed
L transformation Ll .
Coordinates
Current
Normal >
! Processed
> Vertex
Out
Current lighting Q< | gl Associated
Colors & G T Data
Materials T (Colors, Edge Flag|
Fog and Texture
Coordinates)
Current
Edge Flag & A
Fog Coord n—oi
Current
Texture }— texgen Qe texture
matrix O
Coord Set 0 T
| (
Current
Texture texgen Qe texture
matrix 1
Coord Set 1 —| T
| {
Current
Texture texgen B texture
matrix 2
Coord Set 2 —| T
o(
Current
Texture texgen [Q—| texture
matrix 3
Coord Set 3 —| T

rep-
bport

Version 1.4 - July 24, 2002

2.6. BEGIN/END PARADIGM 15

Point culling;
Line Segment
Coordinates Point, - or POIygon —
™Line Segment, or o Clipping
P:/octgssed Polygon Rasterization
Ertices associated > (Primitive) > —
Data Assembly Color
Processing
A
Begin/End
State

Figure 2.3. Primitive assembly and processing.

There is no limit on the number of vertices that may be specified betwBegia
and anEnd.

Points. A series of individual points may be specified by callBggin with an
argument value oPOINTS. No special state need be kept betwBeginandEnd
in this case, since each point is independent of previous and following points.

Line Strips. A series of one or more connected line segments is specified by
enclosing a series of two or more endpoints withBegir/End pair whenBeginis
called withLINE _STRIP. In this case, the first vertex specifies the first segment’s
start point while the second vertex specifies the first segment’s endpoint and the
second segment’s start point. In general, itmevertex (fori > 1) specifies the
beginning of theith segment and the end of the- 1st. The last vertex specifies
the end of the last segment. If only one vertex is specified betwedBethie/End
pair, then no primitive is generated.

The required state consists of the processed vertex produced from the last ver-
tex that was sent (so that a line segment can be generated from it to the current
vertex), and a boolean flag indicating if the current vertex is the first vertex.

Line Loops. Line loops, specified with theINE _LOOPargument value to
Begin, are the same as line strips except that a final segment is added from the final
specified vertex to the first vertex. The additional state consists of the processed
first vertex.

Separate Lines.Individual line segments, each specified by a pair of vertices,
are generated by surrounding vertex pairs vBeégin and End when the value
of the argument tdBegin is LINES. In this case, the first two vertices between a

Version 1.4 - July 24, 2002

16 CHAPTER 2. OPENGL OPERATION

BeginandEnd pair define the first segment, with subsequent pairs of vertices each
defining one more segment. If the number of specified vertices is odd, then the last
one isignored. The state required is the same as for lines but it is used differently: a
vertex holding the first vertex of the current segment, and a boolean flag indicating
whether the current vertex is odd or even (a segment start or end).

Polygons. A polygon is described by specifying its boundary as a series of
line segments. WheBegin is called withPOLYGONthe bounding line segments
are specified in the same way as line loops. Depending on the current state of the
GL, a polygon may be rendered in one of several ways such as outlining its border
or filling its interior. A polygon described with fewer than three vertices does not
generate a primitive.

Only convex polygons are guaranteed to be drawn correctly by the GL. If a
specified polygon is nonconvex when projected onto the window, then the rendered
polygon need only lie within the convex hull of the projected vertices defining its
boundary.

The state required to support polygons consists of at least two processed ver-
tices (more than two are never required, although an implementation may use
more); this is because a convex polygon can be rasterized as its vertices arrive,
before all of them have been specified. The order of the vertices is significant in
lighting and polygon rasterization (see secti@ris3.1and3.5.1).

Triangle strips. A triangle strip is a series of triangles connected along shared
edges. A triangle strip is specified by giving a series of defining vertices between
a Begin/End pair whenBegin is called withTRIANGLE STRIP. In this case, the
first three vertices define the first triangle (and their order is significant, just as for
polygons). Each subsequent vertex defines a new triangle using that point along
with two vertices from the previous triangle. BegirVEnd pair enclosing fewer
than three vertices, WhefRIANGLE STRIP has been supplied ®egin, produces
no primitive. See Figur@.4.

The state required to support triangle strips consists of a flag indicating if the
first triangle has been completed, two stored processed vertices, (called vertex A
and vertex B), and a one bit pointer indicating which stored vertex will be replaced
with the next vertex. After 8egin(TRIANGLESTRIP) , the pointer is initialized
to point to vertex A. Each vertex sent betwedBegyi'End pair toggles the pointer.
Therefore, the first vertex is stored as vertex A, the second stored as vertex B, the
third stored as vertex A, and so on. Any vertex after the second one sent forms a
triangle from vertex A, vertex B, and the current vertex (in that order).

Triangle fans. A triangle fan is the same as a triangle strip with one exception:
each vertex after the first always replaces vertex B of the two stored vertices. The
vertices of a triangle fan are enclosed betwBegin andEnd when the value of
the argument t@eginis TRIANGLE FAN

Version 1.4 - July 24, 2002

2.6. BEGIN/END PARADIGM 17

NN

1 3

(@) (b) (c)

Figure 2.4. (a) A triangle strip. (b) A triangle fan. (c) Independent triangles. The
numbers give the sequencing of the vertices betvReggin andEnd. Note that in
(a) and (b) triangle edge ordering is determined by the first triangle, while in (c
order of each triangle’s edges is independent of the other triangles.

he

—

Separate Triangles. Separate triangles are specified by placing vertices be-
tweenBegin andEnd when the value of the argumentBeginis TRIANGLES In
this case, Th&i + 1st, 3i + 2nd, and3: + 3rd vertices (in that order) determine
a triangle for eachh = 0,1,...,n — 1, where there ar8n + k vertices between
theBeginandEnd. k is either O, 1, or 2; ift is not zero, the finak vertices are
ignored. For each triangle, vertex A is vertgékand vertex B is verte®i + 1.
Otherwise, separate triangles are the same as a triangle strip.

The rules given for polygons also apply to each triangle generated from a tri-
angle strip, triangle fan or from separate triangles.

Quadrilateral (quad) strips. Quad strips generate a series of edge-sharing
quadrilaterals from vertices appearing betwdagin and End, whenBegin is
called with QUADSTRIP. If the m vertices between th8egin and End are
v1,...,Um, Wherev; is the jth specified vertex, then quacdhas vertices (in or-
der)vy;, v2i+1, V243, aNdug; 1o With i = 0, ..., |m/2]. The state required is thus
three processed vertices, to store the last two vertices of the previous quad along
with the third vertex (the first new vertex) of the current quad, a flag to indicate
when the first quad has been completed, and a one-bit counter to count members
of a vertex pair. See Figut&5.

A quad strip with fewer than four vertices generates no primitive. If the number
of vertices specified for a quadrilateral strip betw@&sygin andEnd is odd, the
final vertex is ignored.

Version 1.4 - July 24, 2002

18 CHAPTER 2. OPENGL OPERATION

(@) (b)

Figure 2.5. (a) A quad strip. (b) Independent quads. The numbers give the sequenc-
ing of the vertices betweeBeginandEnd.

Separate Quadrilaterals Separate quads are just like quad strips except that
each group of four vertices, thg + 1st, the4; + 2nd, the4; + 3rd, and the
4j + 4th, generate a single quad, for= 0,1,...,n — 1. The total number of
vertices betweeBeginandEnd is 4n + k, where0 < k < 3; if k is not zero, the
final k£ vertices are ignored. Separate quads are generated by dadiig with
the argument valuQUADS

The rules given for polygons also apply to each quad generated in a quad strip
or from separate quads.

2.6.2 Polygon Edges

Each edge of each primitive generated from a polygon, triangle strip, triangle fan,
separate triangle set, quadrilateral strip, or separate quadrilateral set, is flagged as
eitherboundaryor non-boundary These classifications are used during polygon
rasterization; some modes affect the interpretation of polygon boundary edges (see
section3.5.4). By default, all edges are boundary edges, but the flagging of poly-
gons, separate triangles, or separate quadrilaterals may be altered by calling

void EdgeFlag boolean flag);
void EdgeFlagy boolean *flag);

to change the value of a flag bit. flag is zero, then the flag bit is set FALSE; if
flagis non-zero, then the flag bit is setTRUE

When Begin is supplied with one of the argument valu®OLYGON
TRIANGLES or QUADS each vertex specified within BRegin and End pair be-

Version 1.4 - July 24, 2002

2.7. VERTEX SPECIFICATION 19

gins an edge. If the edge flag bitiRUE then each specified vertex begins an edge
that is flagged as boundary. If the bitA8LSE, then induced edges are flagged as
non-boundary.

The state required for edge flagging consists of one current flag bit. Initially, the
bit is TRUE In addition, each processed vertex of an assembled polygonal primitive
must be augmented with a bit indicating whether or not the edge beginning on that
vertex is boundary or non-boundary.

2.6.3 GL Commands within Begin/End

The only GL commands that are allowed within @ggirVEnd pairs are the com-
mands for specifying vertex coordinates, vertex colors, normal coordinates, tex-
ture coordinates, and fog coordinat&&itex, Color, SecondaryColor, Index,
Normal, TexCoord andMultiTexCoord, FogCoord), the ArrayElement com-
mand (see sectiah 8), theEvalCoord andEvalPoint commands (see sectiél),
commands for specifying lighting material parametéfaterial commands; see
section2.13.2, display listinvocation command€é&liList andCallLists; see sec-
tion 5.4), and theEdgeFlagcommand. Executing any other GL command between
the execution oBegin and the corresponding executiontfd results in the er-
ror INVALID _OPERATIONExecutingBegin afterBeginhas already been executed
but before arEnd is executed generates tid¢vALID _OPERATIONerror, as does
executingend without a previous correspondirgggin.

Execution of the commandsnableClientState DisableClientState Push-
ClientAttrib , PopClientAttrib , ColorPointer, FogCoordPointer, EdgeFlag-
Pointer, IndexPointer, NormalPointer, TexCoordPointer, SecondaryColor-
Pointer, VertexPointer, ClientActiveTexture, InterleavedArrays, and Pixel-

Store is not allowed within anyBegir/End pair, but an error may or may not
be generated if such execution occurs. If an error is not generated, GL operation is
undefined. (These commands are described in se@i@n3.6.1, and Chapte8.)

2.7 \ertex Specification

Vertices are specified by giving their coordinates in two, three, or four dimensions.
This is done using one of several versions ofleetex command:

void Vertex{234}{sifd}(T coords);
void Vertex{234}{sifd}v(T coords);

A call to any Vertex command specifies four coordinates; y, z, andw. The
x coordinate is the first coordinatg,is second,: is third, andw is fourth. A

Version 1.4 - July 24, 2002

20 CHAPTER 2. OPENGL OPERATION

call to Vertex2 sets thexr andy coordinates; the coordinate is implicitly set to
zero and thev coordinate to oneVertex3 setsz, y, andz to the provided values
andw to one. Vertex4 sets all four coordinates, allowing the specification of an
arbitrary point in projective three-space. Invokinifertex command outside of a
BegirVEnd pair results in undefined behavior.

Current values are used in associating auxiliary data with a vertex as described
in section2.6. A current value may be changed at any time by issuing an appropri-
ate command. The commands

void TexCoord{1234}{sifd}(T coords);
void TexCoord{1234}{sifd}v(T coords);

specify the current homogeneous texture coordinates, named, andq. The
TexCoord1 family of commands set the coordinate to the provided single argu-
ment while setting andr to 0 andg to 1. Similarly, TexCoord2 setss andt to the
specified values; to 0 andq to 1; TexCoord3 setss, t, andr, with g set to 1, and
TexCoord4 sets all four texture coordinates.

Implementations support more than one texture unit, and thus more than one
set of texture coordinates. The commands

void MultiTexCoord {1234 }{sifd }(enum textureT coordg
void MultiTexCoord {1234 }{sifd }v(enum textureT
coordg

take the coordinate set to be modified astéxtureparametertextureis a symbolic
constant of the fornTEXTURE, indicating that texture coordinate seis to be
modified. The constants ob@EXTURE = TEXTUREO+ 4 (7 is in the range 0 to
k — 1, wherek is the implementation-dependent number of texture units defined
by MAXTEXTUREUNITS).

The TexCoord commands are exactly equivalent to the corresponhiintgi-
TexCoord commands withextureset toTEXTUREQ

Gets of CURRENITTEXTURECOORDSeturn the texture coordinate set defined
by the value oACTIVE_TEXTURE

Specifying an invalid texture coordinate set for tagtureargument oMulti-
TexCoord results in undefined behavior.

The current normal is set using

void Normal3{bsifd}(T coords);
void Normal3{bsifd}v(T coords);

Version 1.4 - July 24, 2002

2.7. VERTEX SPECIFICATION 21

Byte, short, or integer values passedNormal are converted to floating-point
values as indicated for the corresponding (signed) type in Table
The current fog coordinate is set using

void FogCoord{fd}(T coord);
void FogCoord{fd }v(T coord);

Finally, there are several ways to set the current color and secondary color.
The GL stores a current single-valuealor index as well as a current four-valued
RGBA color and secondary color. Either the index or the color and secondary color
are significant depending as the GL isdolor index modeor RGBA mode The
mode selection is made when the GL is initialized.

The commands to set RGBA colors are

void Color{34}{bsifd ubusui}(T component$,

void Color{34}{bsifd ubusui}v(T component$,

void SecondaryColor3bsifd ubusui}(T component$;
void SecondaryColor3bsifd ubusui}v(T component$;

The Color command has two major variantSolor3 andColor4. The four value
versions set all four values. The three value versions set R, G, and B to the provided
values; A is set to 1.0. (The conversion of integer color components (R, G, B, and
A) to floating-point values is discussed in sectibfh3)

The secondary color has only the three value versions. Secondary A is always
set to 0.0.

Versions of theColor andSecondaryColorcommands that take floating-point
values accept values nominally between 0.0 and 1.0. 0.0 corresponds to the min-
imum while 1.0 corresponds to the maximum (machine dependent) value that a
component may take on in the framebuffer (see se@i@Bon colors and color-
ing). Values outsidé), 1] are not clamped.

The command

void Index{sifd ub}(T index);
void Index{sifd ub}v(T index);

updates the current (single-valued) color index. It takes one argument, the value
to which the current color index should be set. Values outside the (machine-
dependent) representable range of color indices are not clamped.

The state required to support vertex specification consists of four floating-point
numbers for each of the texture units supported by the implementation to store the
current texture coordinates ¢, r, andgq, three floating-point numbers to store

Version 1.4 - July 24, 2002

22 CHAPTER 2. OPENGL OPERATION

the three coordinates of the current normal, one floating-point number to store
the current fog coordinate, four floating-point values to store the current RGBA
color, four floating-point values to store the current RGBA secondary color, and
one floating-point value to store the current color index. There is no notion of a
current vertex, so no state is devoted to vertex coordinates. The initial values of
s, t, andr of the current texture coordinates are zero; the initial valugiefone.

The initial current normal has coordinat@s 0,1). The initial fog coordinate is
zero. The initial RGBA color iR, G,B,A) = (1,1,1,1) and the initial RGBA
secondary color i§0, 0,0, 1). The initial color index is 1.

Version 1.4 - July 24, 2002

2.8. VERTEX ARRAYS 23

2.8 \Vertex Arrays

The vertex specification commands described in se@idmaccept data in almost

any format, but their use requires many command executions to specify even simple
geometry. Vertex data may also be placed into arrays that are stored in the client’s
address space. Blocks of data in these arrays may then be used to specify multiple
geometric primitives through the execution of a single GL command. The client
may specify up to seven plus the valueMAXTEXTUREUNITS arrays: one each

to store vertex coordinates, normals, colors, secondary colors, color indices, fog
coordinates, one or more texture coordinate sets, and edge flags. The commands

void VertexPointer(int size enum type sizei stride
void *pointer);

void NormalPointer(enumtype sizei stride
void *pointer);

void ColorPointer(int size enum type sizei stride
void *pointer);

void SecondaryColorPointef int size enum type
sizei stride void *pointer);

void IndexPointer(enumtype sizei stride void *pointer);

void FogCoordPointer{ enumtype sizei stride,
void *pointer);

void TexCoordPointer(int size enum type sizei stride,
void *pointer);

void EdgeFlagPointel sizei stride void *pointer);

describe the locations and organizations of these arrays. For each command,
type specifies the data type of the values stored in the array. Because edge flags
are always typdoolean , EdgeFlagPointerhas notype argument.size when
present, indicates the number of values per vertex that are stored in the array.
Because normals are always specified with three valesnalPointer has no
sizeargument. Likewise, because color indices and edge flags are always spec-
ified with a single value|ndexPointer and EdgeFlagPointeralso have nize
argument. Table 2.4 indicates the allowable values faize and type (when

Version 1.4 - July 24, 2002

24 CHAPTER 2. OPENGL OPERATION

| Command | Sizes | Types \

VertexPointer 2,3,4 | short ,int ,float ,double

NormalPointer 3 byte , short , int , float |,
double

ColorPointer 3,4 byte , ubyte , short , ushort ,
int ,uint ,float ,double

SecondaryColorPointer 3 byte , ubyte , short , ushort ,
int ,uint ,float ,double

IndexPointer 1 ubyte , short , int , float |,
double

FogCoordPointer 1 float , double

TexCoordPointer 1,2,3,4| short ,int ,float ,double

EdgeFlagPointer 1 boolean

Table 2.4: Vertex array sizes (values per vertex) and data types.

present). Fotypethe valuesBYTE SHORTINT, FLOAT, and DOUBLEindicate
typesbyte , short , int , float , anddouble , respectively; and the values
UNSIGNEDBYTE, UNSIGNEDSHORT andUNSIGNEDINT indicate typesibyte ,
ushort , anduint , respectively. The errdNVALID _VALUEIs generated iize
is specified with a value other than that indicated in the table.

The one, two, three, or four values in an array that correspond to a single vertex
comprise an arraglement The values within each array element are stored se-
quentially in memory. Ifstrideis specified as zero, then array elements are stored
sequentially as well. The erréiVALID _VALUEIs generated iktrideis negative.
Otherwise pointers to théh and(i + 1)st elements of an array differ tstride
basic machine units (typically unsigned bytes), the pointer td:ithel)st element
being greater. For each commampajnter specifies the location in memory of the
first value of the first element of the array being specified.

An individual array is enabled or disabled by calling one of

void EnableClientStatg enumarray);
void DisableClientStatd enumarray);

with array set to VERTEXARRAY NORMAIARRAY COLORARRAY
SECONDARYZOLORARRAY INDEX_ARRAY FOGCOORDINATEARRAY
TEXTURECOORDARRAY or EDGEFLAGARRAY for the vertex, normal, color,
secondary color, color index, fog coordinate, texture coordinate, or edge flag array,
respectively.

Version 1.4 - July 24, 2002

2.8. VERTEX ARRAYS 25

The command
void ClientActiveTexture(enum texture);

is used to select the vertex array client state parameters to be modified by
the TexCoordPointer command and the array affected BgableClientStateand
DisableClientStatewith parameteTEXTURECOORDARRAY This command sets
the client state variableLIENT _ACTIVE_TEXTURE Each texture unit has a client
state vector which is selected when this command is invoked. This state vector in-
cludes the vertex array state. This call also selects which texture units’ client state
vector is used for queries of client state.

Specifying an invalidexturegenerates the erréKVALID _.ENUMValid values
of textureare the same as for tHdultiTexCoord commands described in sec-
tion 2.7.

Theith element of every enabled array is transferred to the GL by calling

void ArrayElement(int i);

For each enabled array, it is as though the corresponding command from ge¢tion
or sectior?.6.2were called with a pointer to elementFor the vertex array, the cor-
responding command Mertex[sizg[typdv, wheresizeis one of [2,3,4], andype
is one of [s,i,f,d], corresponding to array tymsort ,int ,float , anddouble
respectively. The corresponding commands for the edge flag, texture coordinate,
color, secondary color, color index, normal, and fog coordinate arraysdiye-
Flagv, TexCoord[sizd[typdv, Color[sizd[typdv, SecondaryColor3fypdv, In-
dex[typdv, Normal3[typdv, andFogCoord[typdv, respectively. If the vertex
array is enabled, it is as thouylertex[sizg[typdv is executed last, after the exe-
cutions of the other corresponding commands.

Changes made to array data between the executi®egin and the corre-
sponding execution &nd may affect calls tdA\rrayElement that are made within
the sameBeginVEnd period in non-sequential ways. That is, a callwayEle-
ment that precedes a change to array data may access the changed data, and a call
that follows a change to array data may access original data.

Specifying: < 0 results in undefined behavior. Generating the error
INVALID _VALUEIis recommended in this case.

The command

void DrawArrays (enummodeint first, sizei count);

constructs a sequence of geometric primitives using elemgntst through
first + count — 1 of each enabled arraymodespecifies what kind of primi-
tives are constructed; it accepts the same token values asdfie parameter of
theBegincommand. The effect of

Version 1.4 - July 24, 2002

26 CHAPTER 2. OPENGL OPERATION

DrawArrays (mode, first, count);
is the same as the effect of the command sequence

if (mode or count is invalid)
generate appropriate error

else {
int i
Begin(mode);
for (i=0; i < count ; i++)
ArrayElement(first+ i);
End();
}

with one exception: the current edge flag, texture coordinates, color, color index,
and normal coordinates are each indeterminate after the execubimawArrays,
if the corresponding array is enabled. Current values corresponding to disabled
arrays are not modified by the executiorDyawArrays .

Specifying first < 0 results in undefined behavior. Generating the error
INVALID _VALUEIs recommended in this case.

The command

void MultiDrawArrays (enummodeint *first,
sizei *count, sizei primcount);

behaves identically t®rawArrays except thaprimcountseparate ranges of
elements are specified instead. It has the same effect as:

for (i = 0;i < primcount; i++) {
if (count[i] > 0)
DrawArrays (mode, first]i], count[i]);
}

The command

void DrawElementq enummode sizei count enum type
void *indices);

constructs a sequence of geometric primitives using toent elements
whose indices are stored indices type must be one ofUNSIGNEDBYTE

UNSIGNEDSHORT or UNSIGNEDINT , indicating that the values iimdicesare in-
dices of GL typeubyte , ushort , oruint respectively. modespecifies what
kind of primitives are constructed; it accepts the same token values asdte
parameter of th8egincommand. The effect of

Version 1.4 - July 24, 2002

2.8. VERTEX ARRAYS 27

DrawElements(mode, count, type, indices);
is the same as the effect of the command sequence

if (mode, count, or type is invalid)
generate appropriate error

else {
int i;
Begin(mode);
for (i=0; i < count ; i++)
ArrayElement(indices|i]);
End();
}

with one exception: the current edge flag, texture coordinates, color, color index,
and normal coordinates are each indeterminate after the executibrawntle-
ments, if the corresponding array is enabled. Current values corresponding to
disabled arrays are not modified by the executioDEwElements

The command

void MultiDrawElements(enum mode sizei *count,
enumtype void **indices, sizei primcount);

behaves identically tDrawElements except thaprimcountseparate lists of
elements are specified instead. It has the same effect as:

for i = 0; i < primcount; i++) {
if (count[i]) > 0)
DrawElementy mode, count]i], type, indices]i]);

}

The command

void DrawRangeElement§ enum mode uint start,
uint end sizei count enum type void *indices);

is a restricted form oDrawElements mode count type andindicesmatch the
corresponding arguments BlrawElements with the additional constraint that all
values in the arraindicesmust lie betweestartandendinclusive.

Implementations denote recommended maximum amounts of vertex and index
data, which may be queried by callifigetintegerv with the symbolic constants

Version 1.4 - July 24, 2002

28 CHAPTER 2. OPENGL OPERATION

MAXELEMENTSVERTICESandMAXELEMENTSNDICES. If end — start + 1 is
greater than the value GiAXELEMENTSVERTICES or if countis greater than
the value ofMAXELEMENTSNDICES, then the call may operate at reduced per-
formance. There is no requirement that all vertices in the ranget, end] be
referenced. However, the implementation may partially process unused vertices,
reducing performance from what could be achieved with an optimal index set.

The errorINVALID _VALUEIs generated itnd < start. Invalid mode count
or type parameters generate the same errors as would the corresponding call to
DrawElements It is an error for indices to lie outside the rangeart, end], but
implementations may not check for this. Such indices will cause implementation-
dependent behavior.

The command

void InterleavedArrays(enumformat sizei stride,
void *pointer);

efficiently initializes the six arrays and their enables to one of 14 con-
figurations. format must be one of 14 symbolic constants:V2F,
V3F, C4UBV2F, C4UBV3F, C3F.V3F, N3F.V3F, C4F.N3F.V3F, T2F_V3F,
TAF_V4F, T2F_C4UBV3F, T2F_C3F.V3F, T2F_N3F_V3F, T2F_C4F_N3F_V3F, or
T4F_CAF_N3F_VA4F.

The effect of

InterleavedArrays(format, stride, pointer);

is the same as the effect of the command sequence

if (format or stride is invalid)
generate appropriate error
else {
int str;
setey, ec, €, St, Sc, Su, te, Des Prs Pu, @Nds as a function
of Table2.5and the value of ormat.
str = stride;
if (str is zerg
str =s;
DisableClientStatd EDGEFLAGARRAY ;
DisableClientStatd INDEX_ARRAY ;
DisableClientStatd SECONDARZOLORARRAY ;
DisableClientStatd FOGCOORDINATEARRAY ;

it (e) {

Version 1.4 - July 24, 2002

2.8. VERTEX ARRAYS 29

‘ format ‘ et ‘ € ‘ en ‘ St ‘ Se ‘ Su ‘ te
V2F False | False | False 2
V3F False | False | False 3
C4UBV2F False | True | False 4 | 2 | UNSIGNEDBYTE
C4UBV3F False | True | False 4 | 3 | UNSIGNEDBYTE
C3F.V3F False | True | False 3|3 FLOAT
N3F_V3F False | False | True 3
CAF_N3F_V3F False | True | True 4| 3 FLOAT
T2F_V3F True | False | False | 2 3
TAF_V4F True | False | False | 4 4
T2F_C4UBV3F True | True | False| 2 | 4 | 3 | UNSIGNEDBYTE
T2F_C3F.V3F True | True | False| 2 | 3 | 3 FLOAT
T2F_N3F.V3F True | False| True | 2 3
T2F_C4FN3F.V3F | True | True | True | 2 | 4 | 3 FLOAT
TAF_CAFN3FV4F | True | True | True | 4 | 4 | 4 FLOAT
| format [pe [pn| po | s |
V2F 0 2f
V3F 0 3f
C4UBV2F 0 c c+2f
C4UBV3F 0 c c+3f
C3F.V3F 0 3f 6f
N3F_V3F 0 3f 6.f
C4F_N3F.V3F 0 |4f | 17f 10f
T2F_V3F 2f 5f
TAF_VAF 4f 8f
T2F_C4UBV3F 2f c+2f | c+5f
T2F_C3F.V3F 2f 5f 8f
T2F_N3F_V3F 2f 5f 8f
T2F_CAFN3F.V3F | 2f | 6f | Of 12f
TAF_CAFN3F.VAF | 4f | 8f | 11f 15f

Table 2.5: Variables that direct the execution dhterleavedArrays. f is
sizeof(FLOAT) . c is 4 timessizeof(UNSIGNED _BYTE), rounded up to
the nearest multiple off. All pointer arithmetic is performed in units of
sizeof(UNSIGNED _BYTE).

Version 1.4 - July 24, 2002

30 CHAPTER 2. OPENGL OPERATION

EnableClientStatd TEXTURECOORDARRAY ;

TexCoordPointer(s;, FLOAT, str , pointer) ;
} else {

DisableClientStatd TEXTURECOORDARRAY ;

if (e {
EnableClientStatd COLORARRAY ;
ColorPointer(s, t¢, Str , pointer + p¢) ;
} else {
DisableClientStatd COLORARRAY ;

it (e) {
EnableClientStatg NORMAIARRAY ;
NormalPointer(FLOAT, str , pointer + py,) ;
} else {
DisableClientStatd NORMAIARRAY ;
}

EnableClientStatd VERTEXARRAY ;
VertexPointer(s,,, FLOAT, str , pointer + p,) ;

}

If the number of supported texture units (the valu®@XTEXTUREUNITS) is
k, then the client state required to implement vertex arrays consigtsioboolean
values,”+ k memory pointersy + k integer stride value§,+ k£ symbolic constants
representing array types, aBd- k integers representing values per element. In the
initial state, the boolean values are each disabled, the memory pointers are each
null, the strides are each zero, the array types are EBOAT, and the integers
representing values per element are each four.

2.9 Rectangles

There is a set of GL commands to support efficient specification of rectangles as
two corner vertices.

void Rect{sifd}(Tx1, T yL T x2, T y2);
void Rect{sifd}v(Tv1[2], T v2[2]);

Each command takes either four arguments organized as two consecutive pairs of

(x,y) coordinates, or two pointers to arrays each of which contains aalue
followed by ay value. The effect of th®ectcommand

Version 1.4 - July 24, 2002

2.10. COORDINATE TRANSFORMATIONS 31

Rect(21,91, 22, Y2);

is exactly the same as the following sequence of commands:

Begin(POLYGON);
Vertex2(x1,y1);
Vertex2(x2, y1);
Vertex2(x2, y2);
Vertex2(x1, y2);

End();

The appropriat&/ertex2 command would be invoked depending on which of the
Rectcommands is issued.

2.10 Coordinate Transformations

Vertices, normals, and texture coordinates are transformed before their coordinates
are used to produce an image in the framebuffer. We begin with a description of
how vertex coordinates are transformed and how this transformation is controlled.

Figure 2.6 diagrams the sequence of transformations that are applied to ver-
tices. The vertex coordinates that are presented to the GL are teriojext co-
ordinates The model-viewmatrix is applied to these coordinates to yielkeco-
ordinates. Then another matrix, called gjection matrix, is applied to eye
coordinates to yieldlip coordinates. A perspective division is carried out on clip
coordinates to yielshormalized deviceoordinates. A finaliewporttransforma-
tion is applied to convert these coordinates window coordinates

Object coordinates, eye coordinates, and clip coordinates are four-dimensional,
consisting ofz, y, z, andw coordinates (in that order). The model-view and pro-
jection matrices are thusx 4.

Lo
If a vertex in object coordinates is given y‘Z" and the model-view matrix

(o}
Wo
is M, then the vertex’s eye coordinates are found as

Te Lo
ye — M yO
Ze Zo
We Wo

Version 1.4 - July 24, 2002

32 CHAPTER 2. OPENGL OPERATION

) Proiecti . Normalized
Object Model-View Eye rojection Clip Perspective Device
> _— P
Coordinates Matrix Coordinates Matrix Coordinates Division Coordinates

Viewport Window

Transformation Coordinates

Figure 2.6. Vertex transformation sequence.

Similarly, if P is the projection matrix, then the vertex’s clip coordinates are

Tc Le
Ye | _ P Ye
Zc Ze
We We

The vertex’s normalized device coordinates are then

ZTd ‘Tc/wc
(yd):<yc/wc)'
Zd Zc/wc

2.10.1 Controlling the Viewport

The viewport transformation is determined by the viewport’s width and height in
pixels,p, andp,, respectively, and its centés,, o,) (also in pixels). The vertex’s
Tw
window coordinates(Yuw) , are given by
2w

T (pz/2)xq + 0y
Yo | = (py/2)ya + oy :
Zuw [(f =n)/2]za+ (n+ f)/2
The factor and offset applied tg encoded by: and f are set using

Version 1.4 - July 24, 2002

2.10. COORDINATE TRANSFORMATIONS 33

void DepthRangd clampd n, clampd f);

Each ofn andf are clamped to lie withifD, 1], as are all arguments of typampd
or clampf . z,, is taken to be represented in fixed-point with at least as many bits
as there are in the depth buffer of the framebuffer. We assume that the fixed-point
representation used represents each val@®" — 1), wherek € {0,1,...,2™ —
1}, ask (e.g. 1.0 is represented in binary as a string of all ones).

Viewport transformation parameters are specified using

void Viewport(int x,int vy, sizei w,sizei h);

wherex andy give thex andy window coordinates of the viewport’s lower left
corner andv andh give the viewport’s width and height, respectively. The viewport
parameters shown in the above equations are found from these valugs-=as
x+w/2andoy =y + h/2; p, = w, py = h.

Viewport width and height are clamped to implementation-dependent maxi-
mums when specified. The maximum width and height may be found by issuing
an appropriatéset command (see Chapté). The maximum viewport dimen-
sions must be greater than or equal to the visible dimensions of the display being
rendered toINVALID VALUEIs generated if eithew or h is negative.

The state required to implement the viewport transformation is four integers
and two clamped floating-point values. In the initial stateandh are set to the
width and height, respectively, of the window into which the GL is to do its ren-
dering. o, ando, are set tav/2 andh /2, respectivelyn and f are set td).0 and
1.0, respectively.

2.10.2 Matrices

The projection matrix and model-view matrix are set and modified with a variety
of commands. The affected matrix is determined by the current matrix mode. The
current matrix mode is set with

void MatrixMode (enum mode);

which takes one of the pre-defined constareXTURE MODELVIEWCOLOR or
PROJECTIONas the argument valuBEXTURHS described later in sectich10.2
andCOLORs described in sectio®.6.3 If the current matrix mode iSIODELVIEW
then matrix operations apply to the model-view matrix@ ROJECTION then they
apply to the projection matrix.

The two basic commands for affecting the current matrix are

Version 1.4 - July 24, 2002

34 CHAPTER 2. OPENGL OPERATION

void LoadMatrix {fd}(T m[16]);
void MultMatrix {fd}(T m[16]);

LoadMatrix takes a pointer to & x 4 matrix stored in column-major order as 16
consecutive floating-point values, i.e. as

ap as ag a13

az ag aip aiq

az ay ail ais

ag ag a12 Aaie
(This differs from the standard row-maj@rordering for matrix elements. If the
standard ordering is used, all of the subsequent transformation equations are trans-
posed, and the columns representing vectors become rows.)

The specified matrix replaces the current matrix with the one pointédut-
Matrix takes the same type argumentlamdMatrix , but multiplies the current
matrix by the one pointed to and replaces the current matrix with the prodd¢t. If
is the current matrix and/ is the matrix pointed to bjultMatrix ’'s argument,
then the resulting current matrig;’, is

C'=C- M.
The commands

void LoadTransposeMatrix{fd}(T m[16]);
void MultTransposeMatrix {fd }(T m[16]);

take pointers td x 4 matrices stored in row-major order as 16 consecutive floating-
point values, i.e. as

ai a2 a3 Qa4

as ag ar ag

ag aip a1 a12

aiz a4 ais Qie
The effect of

LoadTransposeMatrix[fd] (m);

is the same as the effect of
LoadMatrix[fd] (m™);

The effect of

Version 1.4 - July 24, 2002

2.10. COORDINATE TRANSFORMATIONS 35

MultTransposeMatrix[fd] (m);

is the same as the effect of
MultMatrix[fd] (m™);
The command
void Loadldentity (void);

effectively callsLoadMatrix with the identity matrix:

0 0
0 0
1 0
0 0 1

There are a variety of other commands that manipulate matri€astate,
Translate, Scale Frustum, andOrtho manipulate the current matrix. Each com-
putes a matrix and then invok®&ultMatrix with this matrix. In the case of

oSO O =
o = O

void Rotate{fd}(T6, T x, T y, T z);

gives an angle of rotation in degrees; the coordinates of a vecioe given by

v = (z y 2)T. The computed matrix is a counter-clockwise rotation about the line
through the origin with the specified axis when that axis is pointing up (i.e. the
right-hand rule determines the sense of the rotation angle). The matrix is thus

0
R 0
0
1

Letu=v/|lv]|= (2 ¢ 2)". I

then
R =uu’ 4 cosf(I —uu’) +sin 68S.

The arguments to

void Translate{fd}(Tx, T y, T z);

Version 1.4 - July 24, 2002

36 CHAPTER 2. OPENGL OPERATION

give the coordinates of a translation vectorfag, z)”. The resulting matrix is a
translation by the specified vector:

1 0 0 «
01 0 y
0 0 1 =z
0 0 0 1

void Scaldfd}(Tx, Ty T z);

produces a general scaling along they-, andz- axes. The corresponding matrix
is

O O O8
o ow O
o nw O O
— o O O

For

void Frustum(double I, double r,double b, double t,
double n, double f);

the coordinategl b —n)” and(r t —n)” specify the points on the near clipping
plane that are mapped to the lower left and upper right corners of the window,
respectively (assuming that the eye is located0ad 0)”). f gives the distance
from the eye to the far clipping plane. If eitheror f is less than or equal to zero,

[is equal tor, b is equal tat, orn is equal tof, the erroiNVALID _VALUEresults.

The corresponding matrix is

2 +1

I B
+

o 0
+n _ 2fn

0 0 -5 —7=

0o 0 -1 0

void Ortho(double I, double r,double b, double t,
double n, double f);

describes a matrix that produces parallel projectigrt. — »n)” and(r t —n)7
specify the points on the near clipping plane that are mapped to the lower left and
upper right corners of the window, respectivel\gives the distance from the eye

Version 1.4 - July 24, 2002

2.10. COORDINATE TRANSFORMATIONS 37

to the far clipping plane. If is equal tor, b is equal tot, or n is equal tof, the
errorINVALID _VALUEresults. The corresponding matrix is

0 -5
0 -
0 0 1

For each texture unit, 4 x 4 matrix is applied to the corresponding texture
coordinates. This matrix is applied as

mp ms Mg Mi3 S
mg Mg Mig M4 t
m3 mg7 mi1 Mis r|’
my4 Mg Mi2 Mie q

where the left matrix is the current texture matrix. The matrix is applied to the
coordinates resulting from texture coordinate generation (which may simply be the
current texture coordinates), and the resulting transformed coordinates become the
texture coordinates associated with a vertex. Setting the matrix modeXtURE
causes the already described matrix operations to apply to the texture matrix.
There is also a corresponding texture matrix stack for each texture unit. To
change the stack affected by matrix operations, seatiige texture unit selector
by calling

void ActiveTexture(enumtexture);

The selector also affects calls modifying texture environment state, texture coordi-
nate generation state, texture binding state, and queries of all these state values as
well as current texture coordinates and current raster texture coordinates.

Specifying an invalidexturegenerates the err@VALID ENUMValid values
of textureare the same as for tHdultiTexCoord commands described in sec-
tion 2.7.

The active texture unit selector may be queried by callBejintegerv with
pnameset toACTIVE_TEXTURE

There is a stack of matrices for each of matrix mode®DELVIEW
PROJECTION andCOLORand for each texture unit. FOfODELVIEWnode, the
stack depth is at least 32 (that is, there is a stack of at least 32 model-view ma-
trices). For the other modes, the depth is at I€astexture matrix stacks for all
texture units have the same depth. The current matrix in any mode is the matrix on
the top of the stack for that mode.

Version 1.4 - July 24, 2002

38 CHAPTER 2. OPENGL OPERATION

void PushMatrix (void);

pushes the stack down by one, duplicating the current matrix in both the top of the
stack and the entry below it.

void PopMatrix (void);

pops the top entry off of the stack, replacing the current matrix with the matrix
that was the second entry in the stack. The pushing or popping takes place on the
stack corresponding to the current matrix mode. Popping a matrix off a stack with
only one entry generates the er8ACKUNDERFLOMpushing a matrix onto a full
stack generateSTACKOVERFLOW

When the current matrix mode EEXTURE the texture matrix stack of the
active texture unit is pushed or popped.

The state required to implement transformations consists of a four-valued in-
teger indicating the current matrix mode, one stack of at least4two4 matri-
ces for each o€EOLORPROJECTION each texture unifTEXTURE and a stack of
at least 324 x 4 matrices forMODELVIEWEach matrix stack has an associated
stack pointer. Initially, there is only one matrix on each stack, and all matrices
are set to the identity. The initial matrix modeNK®ODELVIEWThe initial value of
ACTIVE_TEXTURHS TEXTUREOQ

2.10.3 Normal Transformation

Finally, we consider how the model-view matrix and transformation state affect
normals. Before use in lighting, normals are transformed to eye coordinates by a
matrix derived from the model-view matrix. Rescaling and normalization opera-
tions are performed on the transformed normals to make them unit length prior to
use in lighting. Rescaling and normalization are controlled by

void Enable(enumtarget);
and
void Disablg enumtarget);

with target equal toRESCALENORMAIlor NORMALIZE This requires two bits of
state. The initial state is for normals not to be rescaled or normalized.

If the model-view matrix isM, then the normal is transformed to eye coordi-
nates by:

(ng Ny Nz q/):(nm Ny Nz Q)'M_l

Version 1.4 - July 24, 2002

2.10. COORDINATE TRANSFORMATIONS 39

where, if are the associated vertex coordinates, then

S e 8

0, w =0,

7=\ —(ny ny nz)() (2.1)

- , w#0

Implementations may choose instead to transform n, n.) to eye coor-
dinates using

INEENS

(ny' ny' n')=(ny ny nz)'.Mu_1

whereM,, is the upper leftmost 3x3 matrix taken fraid.
Rescale multiplies the transformed normals by a scale factor

(nx// ny/l nzll) — f (n:t/ ny/ nzl)
If rescaling is disabled, thefi = 1. If rescaling is enabled, thefiis computed

as (n;; denotes the matrix element in ravand columnj of M ~!, numbering the
topmost row of the matrix as row 1 and the leftmost column as column 1)

1
 Vmgi? + mgo? + mas?
Note that if the normals sent to GL were unit length and the model-view matrix

uniformly scales space, then rescale makes the transformed normals unit length.
Alternatively, an implementation may chose f as

1
2 2 2
\/nl‘, + nyl + nzl

recomputingf for each normal. This makes all non-zero length normals unit length
regardless of their input length and the nature of the model-view matrix.

After rescaling, the final transformed normal used in lightimg, is computed
as

f=

ng=m(n" n,” n,')
If normalization is disabled, them = 1. Otherwise
1
\/ng://Q +n,"% 4 n,"?

m =

Version 1.4 - July 24, 2002

40 CHAPTER 2. OPENGL OPERATION

Because we specify neither the floating-point format nor the means for matrix
inversion, we cannot specify behavior in the case of a poorly-conditioned (nearly
singular) model-view matriX/. In case of an exactly singular matrix, the trans-
formed normal is undefined. If the GL implementation determines that the model-
view matrix is uninvertible, then the entries in the inverted matrix are arbitrary. In
any case, neither normal transformation nor use of the transformed normal may
lead to GL interruption or termination.

2.10.4 Generating Texture Coordinates

Texture coordinates associated with a vertex may either be taken from the current
texture coordinates or generated according to a function dependent on vertex coor-
dinates. The command

void TexGeryifd }(enumcoord enum pnameT param);
void TexGenr{ifd }v(enumcoord enum pnameT params);

controls texture coordinate generatiotnord must be one of the constargs T,
R, or Q indicating that the pertinent coordinate is #e, r, or ¢ coordinate, re-
spectively. In the first form of the commangaramis a symbolic constant speci-
fying a single-valued texture generation parameter; in the second famamsis
a pointer to an array of values that specify texture generation paramptese
must be one of the three symbolic constarEXx TUREGENMODEOBJECTPLANE
or EYEPLANE If pnameis TEXTUREGENMODE then eitherparamspoints to
or paramis an integer that is one of the symbolic constaDBIECTLINEAR,
EYELINEAR, SPHEREMAR REFLECTIONMAR or NORMAIMAR

If TEXTUREGENMODENdicatesOBJECTLINEAR, then the generation func-
tion for the coordinate indicated mpordis

g = P1%o + P2Yo + P3Z0 + P4aWs.

To, Yor Zo, aNdw, are the object coordinates of the vertgx,. . ., p4 are specified
by calling TexGenwith pnameset toOBJECTPLANEIN which caseparamspoints
to an array containing, ..., ps. There is a distinct group of plane equation co-
efficients for each texture coordinatmord indicates the coordinate to which the
specified coefficients pertain.

If TEXTUREGENMODENdicatesEYE LINEAR, then the function is

g = PiTe + PhYe + Psze + Phwe

where
/

(py vy Py Pi)=(p1 p2 p3 pa) M

Version 1.4 - July 24, 2002

2.10. COORDINATE TRANSFORMATIONS 41

Te, Yer Ze, @aNdw, are the eye coordinates of the vertey, ..., ps are set by
calling TexGenwith pnameset toEYE PLANEIn correspondence with setting the
coefficients in theOBJECTPLANE case. M is the model-view matrix in effect
whenpq, ..., ps are specified. Computed texture coordinates may be inaccurate or
undefined ifM is poorly conditioned or singular.

When used with a suitably constructed texture image, callieGen with
TEXTUREGENMODENdicating SPHEREMAPcan simulate the reflected image of
a spherical environment on a polygoBPHEREMAPtexture coordinates are gen-
erated as follows. Denote the unit vector pointing from the origin to the vertex
(in eye coordinates) bu. Denote the current normal, after transformation to eye
coordinates, by'. Letr = (r, 7, 7.)T, the reflection vector, be given by

r=u-2n" (n'u),

and letm = 2\/7"% +r2 4 (r, + 1)%. Then the value assigned to aroordinate

(the firstTexGenargument value iS) is s = r,/m + %; the value assigned tota
coordinate ig = r,/m + 3. Calling TexGenwith a coord of eitherR or Qwhen
pnameindicatesSPHEREMAPgenerates the errtiVALID _ENUM

If TEXTUREGENMODENdicatesREFLECTIONMAR compute the reflection
vectorr as described for thePHEREMAPmMode. Then the value assigned to an
s coordinate iss = r,; the value assigned totaoordinate ig = r,; and the value
assigned to am coordinate is* = r,. Calling TexGenwith a coord of Qwhen
pnamendicatesREFLECTIONMAPgenerates the erréiVALID _ENUM

If TEXTUREGENMODENdicatesSNORMAIMAR compute the normal vectai;
as described in sectich10.3 Then the value assigned to amroordinate iss =
nf,. the value assigned totacoordinate ig = nf, and the value assigned to an
r coordinate is = ny _ (the valuesiy , ny , andny are the components af;.)
Calling TexGenwith a coord of Q whenpnameindicatesNORMAIMAPgenerates
the errorINVALID _.ENUM

A texture coordinate generation function is enabled or disabled Usmg
able and Disable with an argument of TEXTUREGENS, TEXTUREGENT,
TEXTUREGENR, or TEXTUREGENQ (each indicates the corresponding texture co-
ordinate). When enabled, the specified texture coordinate is computed according
to the currenEYELINEAR, OBJECTLINEAR or SPHEREMAPSspecification, de-
pending on the current setting ®EXTUREGENMODEHor that coordinate. When
disabled, subsequent vertices will take the indicated texture coordinate from the
current texture coordinates.

The state required for texture coordinate generation for each texture unit com-
prises a five-valued integer for each coordinate indicating coordinate generation
mode, and a bit for each coordinate to indicate whether texture coordinate genera-

Version 1.4 - July 24, 2002

42 CHAPTER 2. OPENGL OPERATION

tion is enabled or disabled. In addition, four coefficients are required for the four
coordinates for each &YELINEAR andOBJECTLINEAR. The initial state has the
texture generation function disabled for all texture coordinates. The initial values
of p; for s are all 0 excepp, which is one; fort all thep; are zero excepts, which

is 1. The values aop; for r andq are all 0. These values of apply for both the
EYELINEAR andOBJECTLINEAR versions. Initially all texture generation modes
areEYELINEAR.

2.11 Clipping

Primitives are clipped to thelip volume In clip coordinates, theiew volumeas
defined by

—we < xe < We

—We < Ye < We -

—We < 2Ze < We

This view volume may be further restricted by as many:adient-defined clip
planes to generate the clip volume. i§ an implementation dependent maximum
that must be at least) Each client-defined plane specifies a half-space. The clip
volume is the intersection of all such half-spaces with the view volume (if there no
client-defined clip planes are enabled, the clip volume is the view volume).

A client-defined clip plane is specified with

void ClipPlane(enump, double eqn[4]);

The value of the first argumeng, is a symbolic constanGLIP _PLANE, wherei is

an integer between 0 and— 1, indicating one ot client-defined clip planesqgn

is an array of four double-precision floating-point values. These are the coefficients
of a plane equation in object coordinates; p2, ps, andp4 (in that order). The
inverse of the current model-view matrix is applied to these coefficients, at the time
they are specified, yielding

(ph Py Py ph)=(p1 P2 p3 pa)M!

(whereM is the current model-view matrix; the resulting plane equation is unde-
fined if M is singular and may be inaccuratelif is poorly-conditioned) to obtain

the plane equation coefficients in eye coordinates. All points with eye coordinates
(Te Ye 2e We)T that satisfy

(p1 Py p3 Py)

Version 1.4 - July 24, 2002

2.11. CLIPPING 43

lie in the half-space defined by the plane; points that do not satisfy this condition
do not lie in the half-space.

Client-defined clip planes are enabled with the genEriable command and
disabled with theDisable command. The value of the argument to either com-
mand isCLIP _PLANE wherei is an integer between 0 and specifying a value
of ¢ enables or disables the plane equation with indexThe constants obey
CLIP PLANE = CLIP _PLANEO- i.

If the primitive under consideration is a point, then clipping passes it un-
changed if it lies within the clip volume; otherwise, it is discarded. If the prim-
itive is a line segment, then clipping does nothing to it if it lies entirely within the
clip volume and discards it if it lies entirely outside the volume. If part of the line
segment lies in the volume and part lies outside, then the line segment is clipped
and new vertex coordinates are computed for one or both vertices. A clipped line
segment endpoint lies on both the original line segment and the boundary of the
clip volume.

This clipping produces a valué, < ¢ < 1, for each clipped vertex. If the
coordinates of a clipped vertex aPeand the original vertices’ coordinates &g
andP-, thent is given by

P=tP; + (1 — t)PQ.

The value oft is used in color, secondary color, texture coordinate, and fog coor-
dinate clipping (sectiog.13.9.

If the primitive is a polygon, then it is passed if every one of its edges lies
entirely inside the clip volume and either clipped or discarded otherwise. Polygon
clipping may cause polygon edges to be clipped, but because polygon connectivity
must be maintained, these clipped edges are connected by new edges that lie along
the clip volume’s boundary. Thus, clipping may require the introduction of new
vertices into a polygon. Edge flags are associated with these vertices so that edges
introduced by clipping are flagged as boundary (edgeTfRigg, and so that orig-
inal edges of the polygon that become cut off at these vertices retain their original
flags.

If it happens that a polygon intersects an edge of the clip volume’s boundary,
then the clipped polygon must include a point on this boundary edge. This point
must lie in the intersection of the boundary edge and the convex hull of the vertices
of the original polygon. We impose this requirement because the polygon may not
be exactly planar.

A line segment or polygon whose vertices hawgvalues of differing signs
may generate multiple connected components after clipping. GL implementations
are not required to handle this situation. That is, only the portion of the primitive
that lies in the region ofu. > 0 need be produced by clipping.

Version 1.4 - July 24, 2002

44 CHAPTER 2. OPENGL OPERATION

Primitives rendered with clip planes must satisfy a complementarity crite-
rion. Suppose a single clip plane with coefficieftd p5 p5 p)) (or a num-
ber of similarly specified clip planes) is enabled and a series of primitives are
drawn. Next, suppose that the original clip plane is respecified with coefficients
(—-py —ph —ps —p)) (and correspondingly for any other clip planes) and
the primitives are drawn again (and the GL is otherwise in the same state). In this
case, primitives must not be missing any pixels, nor may any pixels be drawn twice
in regions where those primitives are cut by the clip planes.

The state required for clipping is at least 6 sets of plane equations (each consist-
ing of four double-precision floating-point coefficients) and at least 6 correspond-
ing bits indicating which of these client-defined plane equations are enabled. In the
initial state, all client-defined plane equation coefficients are zero and all planes are
disabled.

2.12 Current Raster Position

The current raster positionis used by commands that directly affect pixels in the
framebuffer. These commands, which bypass vertex transformation and primitive
assembly, are described in the next chapter. The current raster position, however,
shares some of the characteristics of a vertex.

The current raster position is set using one of the commands

void RasterPog234}{sifd}(T coords);
void RasterPoq234}{sifd}v(T coords);

RasterPos4takes four values indicating, vy, z, andw. RasterPos3(or Raster-
Pos2 is analogous, but sets onty y, andz with w implicitly setto1 (or only x
andy with z implicitly set to0 andw implicitly set to1).

Gets of CURRENIRASTERTEXTURECOORD@re affected by the setting of the
StateACTIVE_TEXTURE

The coordinates are treated as if they were specified/eri@x command. The
x, y, z, andw coordinates are transformed by the current model-view and projec-
tion matrices. These coordinates, along with current values, are used to generate
primary and secondary colors and texture coordinates just as is done for a vertex.
The colors and texture coordinates so produced replace the colors and texture co-
ordinates stored in the current raster position’s associated data. If the value of the
fog source (see sectidhl0) is FOGCOORDINATESOURCEthen the current raster
distance is set to the value of the current fog coordinate. Otherwise, the current
raster distance is set to the distance from the origin of the eye coordinate system

Version 1.4 - July 24, 2002

2.12. CURRENT RASTER POSITION 45

to the vertex as transformed by only the current model-view matrix. This distance
may be approximated as discussed in secidfl

The transformed coordinates are passed to clipping as if they represented a
point. If the “point” is not culled, then the projection to window coordinates is
computed (sectior2.10 and saved as the current raster position, and the valid
bit is set. If the “point” is culled, the current raster position and its associated
data become indeterminate and the valid bit is cleared. Figgireummarizes the
behavior of the current raster position.

Alternately, the current raster position may be set by one oWtflrelowPos
commands:

void WindowPos{23}{ifds}(T coords);
void WindowPos{23}{ifds}v(T coords);

WindowPos3takes three values indicating y and z, while WindowPos2
takes two values indicating andy with z implicitly set to0. The current raster
position, (., Yuw, 2w, we), is defined by:

Ty =X

Zw=19 [, z>1
n+ z(f —n), otherwise

we =1

wheren and f are the values passed@epthRange(see Sectio2.10.7).

Lighting, texture coordinate generation, and clipping are not performed by the
WindowPos functions. Instead, in RGBA mode, the current raster color and sec-
ondary color are obtained by clamping each component of the current color and
secondary color, respectively, {0, 1]. In color index mode, the current raster
color index is set to the current color index. The current raster texture coordinates
are set to the current texture coordinates, and the valid bit is set.

If the value of the fog source BOGCOORDINATESOURCEthen the current
raster distance is set to the value of the current fog coordinate. Otherwise, the raster
distance is set to.

Version 1.4 - July 24, 2002

46

CHAPTER 2. OPENGL OPERATION

| |
[1 valid |————]
Rasterpos In — |_> Clip P Project : :
| |
Rast_er ;
c) Vertex/Normal I Position I
NLcj)rrrr:QI ? : Transformation : :
| |
I Raster I
Current Lighting | —a__ | || Distance I
Color & T - : I
Materials ? | |
) | Associated :
—a Texture Data I
Current ’_:_ Texgen Matrix 0 +I :
Texture T I A Current |
Coord Set 0 I Raster I
: Position_!
4 —e. Texture I
Current ._:_ Texgen Matrix 1
Texture T
Coord Set 1
¢ —a__| Texture
Current '_:\— Texgen Matrix 2
Texture T
Coord Set 2
—___| Texture
Current } Texgen Matrix 3
Texture T
Coord Set 3

Figure 2.7. The current raster position and how it is set. Four texture units
shown; however, multitexturing may support a different number of units depen
on the implementation.

Version 1.4 - July 24, 2002

are
ding

2.13. COLORS AND COLORING 47

Convert to

[0.0,1.0] Current 0O,
Clamp to
RGBA O P

Color w [0.0, 1.0]
[—2k,2k—1] . Convert to o »o E

[-1.0,1.0]]

o —— | Color | gguummmmimmn 4
Clipping

Convert to L Flatshade?

fixed—point

[0,2K-1] —pm]

Y

float

Primitive
v i Clipping

Figure 2.8. Processing of RGBA colors. The heavy dotted lines indicate both pri-
mary and secondary vertex colors, which are processed in the same fashion. See
Table2.6for the interpretation of.

The current raster position requires six single-precision floating-point values
forits x,,, ¥, andz,, window coordinates, its,. clip coordinate, its raster distance
(used as the fog coordinate in raster processing), a single valid bit, four floating-
point values to store the current RGBA color, four floating-point values to store the
current RGBA secondary color, one floating-point value to store the current color
index, and 4 floating-point values for texture coordinates for each texture unit. In
the initial state, the coordinates and texture coordinates a(8,all0, 1), the eye
coordinate distance is 0, the fog coordinate is 0, the valid bit is set, the associated
RGBA coloris(1,1,1,1), the associated RGBA secondary colof(is0, 0, 1), and
the associated color index color is 1. In RGBA mode, the associated color index
always has its initial value; in color index mode, the RGBA color and secondary
color always maintain their initial values.

2.13 Colors and Coloring

Figures2.8 and2.9 diagram the processing of RGBA colors and color indices be-
fore rasterization. Incoming colors arrive in one of several formats. Tabkum-
marizes the conversions that take place on R, G, B, and A components depending
on which version of th&€€olor command was invoked to specify the components.

Version 1.4 - July 24, 2002

48 CHAPTER 2. OPENGL OPERATION

Convert to

[0,2"-1] —p=] foat =1 Current
oa Color Mask to
float | Index Lighting ® [0.0, 2N-1]

| Color J
Clipping -
A

Convert to L Flatshade?

fixed—point

Primitive
v i Clipping

Figure 2.9. Processing of color indicesis the number of bits in a color index.

As a result of limited precision, some converted values will not be represented
exactly. In color index mode, a single-valued color index is not mapped.

Next, lighting, if enabled, produces either a color index or primary and sec-
ondary colors. If lighting is disabled, the current color index or current color
(primary color) and current secondary color are used in further processing. After
lighting, RGBA colors are clamped to the ran@el]. A color index is converted
to fixed-point and then its integer portion is masked (see seétivd.§. After
clamping or masking, a primitive may Iflatshadedindicating that all vertices of
the primitive are to have the same colors. Finally, if a primitive is clipped, then
colors (and texture coordinates) must be computed at the vertices introduced or
modified by clipping.

2.13.1 Lighting

GL lighting computes colors for each vertex sent to the GL. This is accomplished
by applying an equation defined by a client-specified lighting model to a collection
of parameters that can include the vertex coordinates, the coordinates of one or
more light sources, the current normal, and parameters defining the characteristics
of the light sources and a current material. The following discussion assumes that
the GL is in RGBA mode. (Color index lighting is described in secfiol3.5)

Lighting is turned on or off using the genermable or Disable commands

Version 1.4 - July 24, 2002

2.13. COLORS AND COLORING 49

GL Type | Conversion |

ubyte c/(28 —1)
byte (2c+1)/(28 - 1)
ushort c/(210 — 1)
short (2c+1)/(21¢ - 1)
uint c/(2% - 1)

int (2c+1)/(2% - 1)
float c

double c

Table 2.6: Component conversions. Color, normal, and depth componénts, (
are converted to an internal floating-point representatif),using the equations

in this table. All arithmetic is done in the internal floating point format. These
conversions apply to components specified as parameters to GL commands and to
components in pixel data. The equations remain the same even if the implemented
ranges of the GL data types are greater than the minimum required ranges. (Refer
to table2.2)

with the symbolic valua.IGHTING. If lighting is off, the current color and cur-

rent secondary color are assigned to the vertex primary and secondary color, re-
spectively. If lighting is on, colors computed computed from the current lighting
parameters are assigned to the vertex primary and secondary colors.

Lighting Operation

A lighting parameter is of one of five types: color, position, direction, real, or
boolean. A color parameter consists of four floating-point values, one for each of
R, G, B, and A, in that order. There are no restrictions on the allowable values for
these parameters. A position parameter consists of four floating-point coordinates
(z, y, z, andw) that specify a position in object coordinates (hay be zero,
indicating a point at infinity in the direction given by, y, andz). A direction
parameter consists of three floating-point coordinateg (andz) that specify a
direction in object coordinates. A real parameter is one floating-point value. The
various values and their types are summarized in TAbleThe result of a lighting
computation is undefined if a value for a parameter is specified that is outside the
range given for that parameter in the table.

There aren light sources, indexed by= 0, ...,n—1. (nis an implementation
dependent maximum that must be at least 8.) Note that the default valugsg;for
ands,; differ for i = 0 andi > 0.

Version 1.4 - July 24, 2002

50

CHAPTER 2. OPENGL OPERATION

Parameter H

Type

| Default Value | Description \

Material Parameters

acm color | (0.2,0.2,0.2,1.0) | ambient color of material
den color | (0.8,0.8,0.8,1.0) | diffuse color of material
Sem color | (0.0,0.0,0.0,1.0) | specular color of material
€cm color | (0.0,0.0,0.0,1.0) | emissive color of material
Srm real 0.0 specular exponent (range:
0.0, 128.0])
am real 0.0 ambient color index
dm real 1.0 diffuse color index
Sm real 1.0 specular color index
Light Source Parameters
ag; color (0.0,0.0,0.0,1.0) | ambient intensity of light
d;i(i =0) color | (1.0,1.0,1.0,1.0) | diffuse intensity of lighD
dg;(i > 0) color | (0.0,0.0,0.0,1.0) | diffuse intensity of light
sqi(i = 0) color | (1.0,1.0,1.0,1.0) | specular intensity of light
sei(1 > 0) color | (0.0,0.0,0.0,1.0) | specular intensity of light
P position | (0.0,0.0,1.0,0.0) | position of lighti
Sdli direction| (0.0,0.0,—1.0) | direction of spotlight for light
Syl real 0.0 spotlight exponent for lighti
(range:[0.0, 128.0])
Crii real 180.0 spotlight cutoff angle for light
(range:[0.0, 90.0], 180.0)
ko; real 1.0 constant attenuation factor for
light i (range:[0.0, 00))
ki real 0.0 linear attenuation factor for
light i (range:[0.0, c0))
ko; real 0.0 quadratic attenuation factor for
lighti (range:[0.0, o))
Lighting Model Parameters
Acs color | (0.2,0.2,0.2,1.0) | ambient color of scene
Vps boolean FALSE viewer assumed to be at
(0,0,0) in eye coordinates
(TRUB or (0,0, cc) (FALSE)
Ces enum SINGLE_COLOR | controls computation of colors
ths boolean FALSE use two-sided lighting mode

Table 2.7: Summary of lighting parameters. The range of individual color compo-
nents is(—oo, +00).

Version 1.4 - July 24, 2002

2.13. COLORS AND COLORING 51

Before specifying the way that lighting computes colors, we introduce oper-
ators and notation that simplify the expressions involvedc;lfind c, are col-
ors without alpha where; = (ri,91,b1) andca = (re,g2,b2), then define
¢y *x cg = (r1712,9192,b1b2). Addition of colors is accomplished by addition of
the components. Multiplication of colors by a scalar means multiplying each com-
ponent by that scalar. #; andds are directions, then define

d; ©dy = max{d1 - dao, 0}

(Directions are taken to have three coordinatesRlfandP, are (homogeneous,
with four coordinates) points then IE’TPQ> be the unit vector that points froi,

to P,. Note that if P, has a zerav coordinate and@; has non-zera coordinate,
thenlfl?’g> is the unit vector corresponding to the direction specified byrthe
andz coordinates oPs; if P has a zerav coordinate and®5 has a non-zeraw
coordinate thed; P is the unit vector that is the negative of that corresponding
to the direction specified bP;. If both P; andP, have zerav coordinates, then
P, P, is the unit vector obtained by normalizing the direction corresponding to
Py, —P;.

If d is an arbitrary direction, then let be the unit vector inl’s direction. Let
||IP1P2|| be the distance betwed?, andPs. Finally, letV be the point corre-
sponding to the vertex being lit, amdbe the corresponding normal. LBt be the
eyepoint (0, 0,0, 1) in eye coordinates).

Lighting produces two colors at a vertex: a primary calgy; and a secondary
colorcg... The values ot,,; andc,.. depend on the light model color contrel,.

If c.s = SINGLE_.COLORthen the equations to compuig.; andcs,. are

Cori = €cm
+ acm * Acs
n—1
+ Z (att;)(spot;) [acm * ac;
=0 + (n © Wp}i)dcm * dey;
+ (fi)(n O] hi)srmscm * Scli]
Csee = (0,0,0,1)

If c.s = SEPARATESPECULARCOLORthen

Cpri = €cm

+ acm * Acs

Version 1.4 - July 24, 2002

52 CHAPTER 2. OPENGL OPERATION

i
L

+ (att;)(spot;) [acm * Ay

=0 + (Il O] ‘—fﬁpli)dcm * dcli}
n—1
Cove = (att;)(spot;) (f;) (0 © 1) 5™ S % Si
=0
where
qo- (1o \ﬁ‘pzi #0, (2.2)
0, otherwise,
VB, + VP,, vps = TRUE
VP,;+(0 0 1), v, =FALSE
1 H H
, if P i S W 75 0,
att, = 3 koi + kil VPl + kol VPl ! (2.4)
1.0, otherwise.
(P V © 8ai)*ti, ey # 180.0, Py V © 8415 > cos(cis),
spot; = 0.0, crii 7 180.0, Pyy; V ©84; < cos(cry;)(2.5)

1.0, i = 180.0.

All computations are carried out in eye coordinates.

The value of A produced by lighting is the alpha value associated avith
A is always associated with the primary cotgy.;; the alpha component ef.. is
alwaysl.

Results of lighting are undefined if the, coordinate ¢ in eye coordinates) of
V is zero.

Lighting may operate itwo-sidedmode {,s = TRUB, in which afront color
is computed with one set of material parameters {tbet materia) and aback
color is computed with a second set of material parametersb@dbk material.
This second computation replaaesvith —n. If ¢,; = FALSE, then the back color
and front color are both assigned the color computed using the front material with
n.

Version 1.4 - July 24, 2002

2.13. COLORS AND COLORING 53

The selection between back color and front color depends on the primitive of
which the vertex being lit is a part. If the primitive is a point or a line segment,
the front color is always selected. If it is a polygon, then the selection is based on
the sign of the (clipped or unclipped) polygon’s signed area computed in window
coordinates. One way to compute this area is

1= o
0= Tl — T Y (2.6)
1=0

where !, andy! are ther andy window coordinates of théth vertex of the
n-vertex polygon (vertices are numbered starting at zero for purposes of this com-
putation) and & 1 is (i + 1) mod n. The interpretation of the sign of this value is
controlled with

void FrontFace(enumdir);

Settingdir to CCWcorresponding to counter-clockwise orientation of the projected
polygon in window coordinates) indicates thatif< 0, then the color of each
vertex of the polygon becomes the back color computed for that vertex while if
a > 0, then the front color is selected.dfr is Cwthena is replaced by-a in the
above inequalities. This requires one bit of state; initially, it indicatesv

2.13.2 Lighting Parameter Specification

Lighting parameters are divided into three categories: material parameters, light
source parameters, and lighting model parameters (see Zapl&ets of lighting
parameters are specified with

void Material {if }(enumface enum pnameT param);
void Material {if }v(enumface enum pnameT params);
void Light {if }(enumlight, enum pnameT param);
void Light {if }v(enumlight, enum pnameT params);
void LightModel {if }(enumpnameT param);

void LightModel{if }v(enumpname T params);

pnameis a symbolic constant indicating which parameter is to be set (see Ta-
ble 2.8). In the vector versions of the commangsramsis a pointer to a group

of values to which to set the indicated parameter. The number of values pointed to
depends on the parameter being set. In the non-vector verpanasnis a value to
which to set a single-valued parameter.pgfamcorresponds to a multi-valued pa-
rameter, the errdNVALID _ENUMesults.) For théaterial commandfacemust

Version 1.4 - July 24, 2002

54 CHAPTER 2. OPENGL OPERATION

be one oFRONTBACK or FRONTANDBACK indicating that the propertyameof
the front or back material, or both, respectively, should be set. In the chsghof
light is a symbolic constant of the foridGHT3, indicating that lighti is to have
the specified parameter set. The constants abieMT: = LIGHTO + 4.

Table 2.8 gives, for each of the three parameter groups, the correspondence
between the pre-defined constant names and their names in the lighting equa-
tions, along with the number of values that must be specified with each. Color
parameters specified wittlaterial andLight are converted to floating-point val-
ues (if specified as integers) as indicated in Tabtfor signed integers. The error
INVALID _VALUEoOccurs if a specified lighting parameter lies outside the allowable
range given in Tabl@.7. (The symbol " indicates the maximum representable
magnitude for the indicated type.)

The current model-view matrix is applied to the position parameter indicated
with Light for a particular light source when that position is specified. These
transformed values are the values used in the lighting equation.

The spotlight direction is transformed when it is specified using only the upper
leftmost 3x3 portion of the model-view matrix. That isNA,, is the upper left 3x3
matrix taken from the current model-view matfiX, then the spotlight direction

dy

dy

d.
d, dy
d | =M, |d|.
d., d.

Anindividual light is enabled or disabled by calligable or Disablewith the
symbolic valueLIGHT: (i is in the range O ta — 1, wheren is the implementation-
dependent number of lights). If lightis disabled, theth term in the lighting
equation is effectively removed from the summation.

is transformed to

2.13.3 ColorMaterial

It is possible to attach one or more material properties to the current color, so
that they continuously track its component values. This behavior is enabled and
disabled by callindgenable or Disablewith the symbolic valu&€OLORMATERIAL

The command that controls which of these modes is selected is

void ColorMaterial (enumface enum mode);

Version 1.4 - July 24, 2002

2.13. COLORS AND COLORING

| Parameter|| Name | Number of valueg
Material ParameterdMaterial)
Aem AMBIENT 4
dem DIFFUSE 4
Aem, dem AMBIENTANDDIFFUSE 4
Sem SPECULAR 4
€cm EMISSION 4
Srm SHININESS 1
Qs Qs S COLORNDEXES 3
Light Source Parameterkight)
a; AMBIENT 4
do DIFFUSE 4
Scli SPECULAR 4
P POSITION 4
Sdli SPOTDIRECTION 3
Srli SPOTEXPONENT 1
Crli SPOTCUTOFF 1
ko CONSTANIATTENUATION 1
k1 LINEAR_ATTENUATION 1
ko QUADRATICATTENUATION 1
Lighting Model Parameterd.ightModel)
Acs LIGHT _MODELAMBIENT 4
Vps LIGHT _MODELLOCALVIEWER 1
ths LIGHT _MODELTWOSIDE 1
Ces LIGHT _MODELCOLORCONTROL 1
Table 2.8: Correspondence of lighting parameter symbols to names.

AMBIENTANDDIFFUSE is used to se4..,,, andd,,, to the same value.

Version 1.4 - July 24, 2002

55

56

CHAPTER 2. OPENGL OPERATION

Color*()

Material*(FRONT,AMBIENT)

Material*(FRONT,DIFFUSE)

Material*(FRONT,SPECULAR)

Material*(FRONT,EMISSION)

Current
Color

To subsequent vertex o

perations

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is AMBIENT or AMBIENT_AND_DIFFUSE,

and ColorMaterial is enabled.

Down otherwise.

_’KO_D Front Ambient

Color

[To lighting equations

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is DIFFUSE or AMBIENT_AND_DIFFUSE,

and ColorMaterial is enabled.

Down otherwise.

»Ko> Front Diffuse

Color

" To lighting equations

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is SPECULAR, and ColorMaterial is

enabled. Down otherwise.

’Ko. Front Specular

Color

[To lighting equations

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is EMISSION, and ColorMaterial is

enabled. Down otherwise.

’Ko. Front Emission

Color

[To lighting equations

= State values flow continuously along this path

> State values flow along this path only when a command is issued

Figure 2.10. ColorMaterial operation. Material properties are continuously u
dated from the current color whil€olorMaterial is enabled and has the apprd
priate mode. Only the front material properties are included in this figure.
back material properties are treated identically, exceptfdwmust beBACKor
FRONTANDBACK

The

Version 1.4 - July 24, 2002

2.13. COLORS AND COLORING 57

faceis one of FRONT BACK or FRONTANDBACK indicating whether the front
material, back material, or both are affected by the current caloodeis one

of EMISSION, AMBIENT, DIFFUSE, SPECULARor AMBIENTANDDIFFUSE and
specifies which material property or properties track the current colonotfeis
EMISSION, AMBIENT, DIFFUSE, or SPECULARthen the value of..,,,, acy,, dem OF

Sem, respectively, will track the current color. iiodeis AMBIENT.ANDDIFFUSE,
botha,.,, andd.,, track the current color. The replacements made to material prop-
erties are permanent; the replaced values remain until changed by either sending a
new color or by setting a new material value wh@olorMaterial is not currently
enabled to override that particular value. WH&DLORMATERIAL s enabled, the
indicated parameter or parameters always track the current color. For instance,
calling

ColorMaterial (FRONTAMBIENT)

while COLORMATERIALIis enabled sets the front material,, to the value of the
current color.

2.13.4 Lighting State

The state required for lighting consists of all of the lighting parameters (front
and back material parameters, lighting model parameters, and at least 8 sets of
light parameters), a bit indicating whether a back color distinct from the front
color should be computed, at least 8 bits to indicate which lights are enabled,
a five-valued variable indicating the currebblorMaterial mode, a bit indicat-

ing whether or notCOLORMATERIAL is enabled, and a single bit to indicate
whether lighting is enabled or disabled. In the initial state, all lighting parame-
ters have their default values. Back color evaluation does not take [Qaber-
Material is FRONTANDBACKandAMBIENTANDDIFFUSE, and both lighting and
COLORVATERIALare disabled.

2.13.5 Color Index Lighting

A simplified lighting computation applies in color index mode that uses many of
the parameters controlling RGBA lighting, but none of the RGBA material param-
eters. First, the RGBA diffuse and specular intensities of ligid.; ands,;,
respectively) determine color index diffuse and specular light intensitjesnd
sy; from

dy; = (BO)R(CICZZ) + (~59)G(dclz‘) + (‘11)B(dcli)

and
sii = (:30)R(sci) + (:59)G(scii) + (-11) B(scui)-

Version 1.4 - July 24, 2002

58 CHAPTER 2. OPENGL OPERATION

R(x) indicates the R component of the coloand similarly forG(x) and B(x).
Next, let

n

s = Z(atti)(spotl-)(sli)(fi)(n ® fli)s"""
=0
whereatt; andspot; are given by equation&.4 and2.5, respectively, and; and
h; are given by equation3.2 and2.3 respectively. Let’ = min{s, 1}. Finally,
let

d= zn:(atti)(spoti)(dli)(n © VB,;).

i=0
Then color index lighting produces a valgggiven by

c=am+d(1—5)dn — am) + 5 (sm — am).

The final color index is
¢ =min{c, s, }.

The valuesy,,, d,, ands,, are material properties described in Tali’esdand2.8.

Any ambient light intensities are incorporated intg. As with RGBA lighting,
disabled lights cause the corresponding terms from the summations to be omitted.
The interpretation of,, and the calculation of front and back colors is carried out
as has already been described for RGBA lighting.

The valuesa,,, d.,, and s, are set withMaterial using apname of
COLORINDEXES Their initial values aré, 1, and1, respectively. The additional
state consists of three floating-point values. These values have no effect on RGBA
lighting.

2.13.6 Clamping or Masking

After lighting (whether enabled or not), all components of both primary and sec-
ondary colors are clamped to the ran@el].

For a color index, the index is first converted to fixed-point with an unspecified
number of bits to the right of the binary point; the nearest fixed-point value is
selected. Then, the bits to the right of the binary point are left alone while the
integer portion is masked (bitwise ANDed) wifi — 1, wheren is the number of
bits in a color in the color index buffer (buffers are discussed in chapter

2.13.7 Flatshading

A primitive may beflatshaded meaning that all vertices of the primitive are as-
signed the same color index or the same primary and secondary colors. These

Version 1.4 - July 24, 2002

2.13. COLORS AND COLORING 59

| Primitive type of polygoni | Vertex |
single polygon{ = 1) 1
triangle strip 1+ 2
triangle fan 1+ 2
independent triangle 31
quad strip 2i+2
independent quad 4q

Table 2.9: Polygon flatshading color selection. The colors used for flatshading
theith polygon generated by the indicatBegirVEnd type are derived from the
current color (if lighting is disabled) in effect when the indicated vertex is specified.
If lighting is enabled, the colors are produced by lighting the indicated vertex.
Vertices are numberedthroughn, wheren is the number of vertices between the
BeginEnd pair.

colors are the colors of the vertex that spawned the primitive. For a point, these
are the colors associated with the point. For a line segment, they are the colors of
the second (final) vertex of the segment. For a polygon, they come from a selected
vertex depending on how the polygon was generated. TaBlsummarizes the
possibilities.

Flatshading is controlled by

void ShadeMode(enum mode);

modevalue must be either of the symbolic consta®tOOTHr FLAT. If modeis
SMOOTHthe initial state), vertex colors are treated individuallymibdeis FLAT,
flatshading is turned orShadeModelthus requires one bit of state.

2.13.8 Color and Texture Coordinate Clipping

After lighting, clamping or masking and possible flatshading, colors are clipped.
Those colors associated with a vertex that lies within the clip volume are unaffected
by clipping. If a primitive is clipped, however, the colors assigned to vertices
produced by clipping are clipped colors.

Let the colors assigned to the two vertid@s andP,, of an unclipped edge be
c1 andcq. The value oft (section2.11) for a clipped poinf? is used to obtain the
color associated witl? as

c=tcy+ (1 —t)ca.

Version 1.4 - July 24, 2002

60 CHAPTER 2. OPENGL OPERATION

(For a color index color, multiplying a color by a scalar means multiplying the
index by the scalar. For an RGBA color, it means multiplying each of R, G, B, and
A by the scalar. Both primary and secondary colors are treated in the same fashion.)
Polygon clipping may create a clipped vertex along an edge of the clip volume’s
boundary. This situation is handled by noting that polygon clipping proceeds by
clipping against one plane of the clip volume’s boundary at a time. Color clipping
is done in the same way, so that clipped points always occur at the intersection of
polygon edges (possibly already clipped) with the clip volume’s boundary.

Texture and fog coordinates must also be clipped when a primitive is clipped.
The method is exactly analogous to that used for color clipping.

2.13.9 Final Color Processing

For an RGBA color, each color component (which lies[in1]) is converted
(by rounding to nearest) to a fixed-point value with bits. We assume that
the fixed-point representation used represents each vali@™ — 1), where
k e {0,1,...,2™ — 1}, as k (e.g. 1.0 is represented in binary as a string of
all ones).m must be at least as large as the number of bits in the corresponding
component of the framebuffern must be at least 2 for A if the framebuffer does
not contain an A component, or if there is only 1 bit of A in the framebuffer. A
color index is converted (by rounding to nearest) to a fixed-point value with at least
as many bits as there are in the color index portion of the framebuffer.

Because a number of the forky (2™ — 1) may not be represented exactly as
a limited-precision floating-point quantity, we place a further requirement on the
fixed-point conversion of RGBA components. Suppose that lighting is disabled, the
color associated with a vertex has not been clipped, and oBelofub, Colorus,
or Colorui was used to specify that color. When these conditions are satisfied, an
RGBA component must convert to a value that matches the component as specified
in the Color command: ifm is less than the number of bitswith which the
component was specified, then the converted value must equal the most significant
m bits of the specified value; otherwise, the most signifiddrits of the converted
value must equal the specified value.

Version 1.4 - July 24, 2002

Chapter 3

Rasterization

Rasterization is the process by which a primitive is converted to a two-dimensional
image. Each point of this image contains such information as color and depth.
Thus, rasterizing a primitive consists of two parts. The first is to determine which
squares of an integer grid in window coordinates are occupied by the primitive.
The second is assigning a color and a depth value to each such square. The results
of this process are passed on to the next stage of the GL (per-fragment operations),
which uses the information to update the appropriate locations in the framebuffer.
Figure3.1diagrams the rasterization process.

A grid square along with its parameters of assigned cotof@epth), fog coor-
dinate, and texture coordinates is calldde@ment the parameters are collectively
dubbed the fragmentassociated dataA fragment is located by its lower left cor-
ner, which lies on integer grid coordinates. Rasterization operations also refer to a
fragment'scenter which is offset by(1/2,1/2) from its lower left corner (and so
lies on half-integer coordinates).

Grid squares need not actually be square in the GL. Rasterization rules are not
affected by the actual aspect ratio of the grid squares. Display of non-square grids,
however, will cause rasterized points and line segments to appear fatter in one
direction than the other. We assume that fragments are square, since it simplifies
antialiasing and texturing.

Several factors affect rasterization. Lines and polygons may be stippled. Points
may be given differing diameters and line segments differing widths. A point, line
segment, or polygon may be antialiased.

61

CHAPTER 3. RASTERIZATION

Point
Rasterization
P From Line _
rimitive Rasterization Texturing
Assembly
Polygon l
Rasterization
Color Sum
Pixel
DrawPixels —® Rectangle
Rasterization
Bitmap
i Fo —
Bitmap —#%1 Rasterization 9
Fragments

Figure 3.1. Rasterization.

Version 1.4 - July 24, 2002

3.1. INVARIANCE 63

3.1 Invariance

Consider a primitivey’ obtained by translating a primitiyethrough an offsetz, y)

in window coordinates, where andy are integers. As long as neith&rnor p is
clipped, it must be the case that each fragm@miroduced frony’ is identical to
a corresponding fragmerftfrom p except that the center ¢f is offset by(z, y)

from the center off.

3.2 Antialiasing

Antialiasing of a point, line, or polygon is effected in one of two ways depending
on whether the GL is in RGBA or color index mode.

In RGBA mode, the R, G, and B values of the rasterized fragment are left
unaffected, but the A value is multiplied by a floating-point value in the range
[0, 1] that describes a fragment’s screen pixel coverage. The per-fragment stage of
the GL can be set up to use the A value to blend the incoming fragment with the
corresponding pixel already present in the framebuffer.

In color index mode, the least significanbits (to the left of the binary point)
of the color index are used for antialiasihg:= min{4, m}, wherem is the number
of bits in the color index portion of the framebuffer. The antialiasing process sets
theseb bits based on the fragment’s coverage value: the bits are set to zero for no
coverage and to all ones for complete coverage.

The details of how antialiased fragment coverage values are computed are dif-
ficult to specify in general. The reason is that high-quality antialiasing may take
into account perceptual issues as well as characteristics of the monitor on which
the contents of the framebuffer are displayed. Such details cannot be addressed
within the scope of this document. Further, the coverage value computed for a
fragment of some primitive may depend on the primitive’s relationship to a num-
ber of grid squares neighboring the one corresponding to the fragment, and not just
on the fragment’s grid square. Another consideration is that accurate calculation
of coverage values may be computationally expensive; consequently we allow a
given GL implementation to approximate true coverage values by using a fast but
not entirely accurate coverage computation.

In light of these considerations, we chose to specify the behavior of exact an-
tialiasing in the prototypical case that each displayed pixel is a perfect square of
uniform intensity. The square is calledragment squarand has lower left corner
(x,y) and upper right corndec + 1, y+ 1). We recognize that this simple box filter
may not produce the most favorable antialiasing results, but it provides a simple,
well-defined model.

Version 1.4 - July 24, 2002

64 CHAPTER 3. RASTERIZATION

A GL implementation may use other methods to perform antialiasing, subject
to the following conditions:

1. If f1 andf; are two fragments, and the portion fif covered by some prim-
itive is a subset of the corresponding portionfefcovered by the primitive,
then the coverage computed ffr must be less than or equal to that com-
puted for fs.

2. The coverage computation for a fragmehtnust be local: it may depend
only on f’s relationship to the boundary of the primitive being rasterized. It
may not depend olfi's x andy coordinates.

Another property that is desirable, but not required, is:

3. The sum of the coverage values for all fragments produced by rasterizing a
particular primitive must be constant, independent of any rigid motions in
window coordinates, as long as none of those fragments lies along window
edges.

In some implementations, varying degrees of antialiasing quality may be obtained
by providing GL hints (sectiorb.6), allowing a user to make an image quality
versus speed tradeoff.

3.2.1 Multisampling

Multisampling is a mechanism to antialias all GL primitives: points, lines, poly-
gons, bitmaps, and images. The technique is to sample all primitives multiple times
at each pixel. The color sample values are resolved to a single, displayable color
each time a pixel is updated, so the antialiasing appears to be automatic at the
application level. Because each sample includes color, depth, and stencil informa-
tion, the color (including texture operation), depth, and stencil functions perform
equivalently to the single-sample mode.

An additional buffer, called the multisample buffer, is added to the framebuffer.
Pixel sample values, including color, depth, and stencil values, are stored in this
buffer. When the framebuffer includes a multisample buffer, it does not include
depth or stencil buffers, even if the multisample buffer does not store depth or
stencil values. Color buffers (left, right, front, back, and aux) do coexist with the
multisample buffer, however.

Multisample antialiasing is most valuable for rendering polygons, because it
requires no sorting for hidden surface elimination, and it correctly handles adjacent
polygons, object silhouettes, and even intersecting polygons. If only points or
lines are being rendered, the “smooth” antialiasing mechanism provided by the

Version 1.4 - July 24, 2002

3.2. ANTIALIASING 65

base GL may result in a higher quality image. This mechanism is designed to
allow multisample and smooth antialiasing techniques to be alternated during the
rendering of a single scene.

If the value of SAMPLEBUFFERSIs one, the rasterization of all primi-
tives is changed, and is referred to as multisample rasterization. Otherwise,
primitive rasterization is referred to as single-sample rasterization. The value
of SAMPLEBUFFERSIis queried by callingGetintegerv with pname set to
SAMPLEBUFFERS

During multisample rendering the contents of a pixel fragment are changed
in two ways. First, each fragment includes a coverage value SAMPLESbits.

The value oSAMPLESs an implementation-dependent constant, and is queried by
calling GetIntegerv with pnameset toSAMPLES

Second, each fragment includeaMPLESdepth values, color values, and sets
of texture coordinates, instead of the single depth value, color value, and set of
texture coordinates that is maintained in single-sample rendering mode. An imple-
mentation may choose to assign the same color value and the same set of texture
coordinates to more than one sample. The location for evaluating the color value
and the set of texture coordinates can be anywhere within the pixel including the
fragment center or any of the sample locations. The color value and the set of tex-
ture coordinates need not be evaluated at the same location. Each pixel fragment
thus consists of integer x and y grid coordinatesMPLEScolor and depth values,
SAMPLESsets of texture coordinates, and a coverage value with a maximum of
SAMPLEShits.

Multisample rasterization is enabled or disabled by callimgble or Disable
with the symbolic constatMULTISAMPLE

If MULTISAMPLEIs disabled, multisample rasterization of all primitives is
equivalent to single-sample (fragment-center) rasterization, except that the frag-
ment coverage value is set to full coverage. The color and depth values and the
sets of texture coordinates may all be set to the values that would have been as-
signed by single-sample rasterization, or they may be assigned as described below
for multisample rasterization.

If MULTISAMPLHS enabled, multisample rasterization of all primitives differs
substantially from single-sample rasterization. It is understood that each pixel in
the framebuffer haSAMPLESIocations associated with it. These locations are
exact positions, rather than regions or areas, and each is referred to as a sample
point. The sample points associated with a pixel may be located inside or outside
of the unit square that is considered to bound the pixel. Furthermore, the relative
locations of sample points may be identical for each pixel in the framebuffer, or
they may differ.

If the sample locations differ per pixel, they should be aligned to window, not

Version 1.4 - July 24, 2002

66 CHAPTER 3. RASTERIZATION

screen, boundaries. Otherwise rendering results will be window-position specific.
The invariance requirement described in secfdhis relaxed for all multisample
rasterization, because the sample locations may be a function of pixel location.

It is not possible to query the actual sample locations of a pixel.

3.3 Points
The rasterization of points is controlled with
void PointSizg float size);

sizespecifies the requested size of a point. The default value is 1.0. A value less
than or equal to zero results in the erfidwALID VALUE

The requested point size is multiplied with a distance attenuation factor,
clamped to a specified point size range, and further clamped to the implementation-
dependent point size range to produce the derived point size:

derived_size = cl size x (!)
rived_size = clamp | siz T bidicrd

where d is the eye-coordinate distance from the €ye, 0, 1) in eye coordinates,
to the vertex, and, b, andc are distance attenuation function coefficients.

If multisampling is not enabled, the derived size is passed on to rasterization as
the point width.

If multisampling is enabled, an implementation may optionally fade the point
alpha (see sectioB.1?) instead of allowing the point width to go below a given
threshold. In this case, the width of the rasterized point is

) derived_size derived_size > threshold
width = { threshold otherwise (3.1)
and the fade factor is computed as follows:
p 1 derived_size > threshold -
= A N2 .
Jade (7‘1%’;’:&5@26) otherwise (3.2)

The distance attenuation function coefficiemts, andc, the bounds of the first
point size range clamp, and the point fadeeshold, are specified with

void glPointParameter{if }(enumpnamefloat param);
void glPointParameter{if }v(enumpnamefloat *params);

Version 1.4 - July 24, 2002

3.3. POINTS 67

If pnameis POINT_SIZE MIN or POINT_SIZE MAX then param speci-
fies, or params points to the lower or upper bound respectively to which
the derived point size is clamped. If the lower bound is greater than
the upper bound, the point size after clamping is undefined. pndimeis
POINT_DISTANCEATTENUATION then paramspoints to the coefficients, b,
and c. If pnameis POINT_FADETHRESHOLLSIZE, then param specifies,
or paramspoints to the point fadeéhreshold. Values of POINT_SIZE MIN,
POINT_SIZE MAX or POINT_ FADETHRESHOLIBIZE less than zero result in the
errorINVALID _VALUE

Point antialiasing is enabled or disabled by callirgable or Disablewith the
symbolic constanPOINT_SMOOTHT he default state is for point antialiasing to be
disabled.

3.3.1 Basic Point Rasterization

In the default state, a point is rasterized by truncating:j{sandy,, coordinates
(recall that the subscripts indicate that theseaaendy window coordinates) to
integers. This(z,y) address, along with data derived from the data associated
with the vertex corresponding to the point, is sent as a single fragment to the per-
fragment stage of the GL.

The effect of a point width other thah0 depends on the state of point an-
tialiasing. If antialiasing is disabled, the actual width is determined by rounding
the supplied width to the nearest integer, then clamping it to the implementation-
dependent maximum non-antialiased point width. This implementation-dependent
value must be no less than the implementation-dependent maximum antialiased
point width, rounded to the nearest integer value, and in any event no lesk.than
If rounding the specified width results in the valughen it is as if the value were
1. If the resulting width is odd, then the point

(@) = (120] + 5 Lvo) + 3)

is computed from the vertex’s,, andy,,, and a square grid of the odd width cen-
tered at(x, y) defines the centers of the rasterized fragments (recall that fragment
centers lie at half-integer window coordinate values). If the width is even, then the
center point is
1 1
(x,y) = (I_xw + §J7 Lyw + §J)7

the rasterized fragment centers are the half-integer window coordinate values
within the square of the even width centered(ony). See figure3.2.

All fragments produced in rasterizing a non-antialiased point are assigned the
same associated data, which are those of the vertex corresponding to the point, with

Version 1.4 - July 24, 2002

68 CHAPTER 3. RASTERIZATION

45 :-
35 :L
2.5 '-
15 i—
05 L
05 15 25 35 45 55 05 15 25 35 45 5.I5
Odd Width Even Width
Figure 3.2. Rasterization of non-antialiased wide points. The crosses show fragment
centers produced by rasterization for any point that lies within the shaded region.
The dotted grid lines lie on half-integer coordinates.

texture coordinates, ¢, andr replaced withs/q, t/q, andr/q, respectively. lfy is
less than or equal to zero, the results are undefined.

If antialiasing is enabled, then point rasterization produces a fragment for each
fragment square that intersects the region lying within the circle having diameter
equal to the current point width and centered at the poiats, y,,) (figure 3.3).

The coverage value for each fragment is the window coordinate area of the in-
tersection of the circular region with the corresponding fragment square (but see
section3.2). This value is saved and used in the final step of rasterization (sec-
tion 3.11). The data associated with each fragment are otherwise the data associ-
ated with the point being rasterized, with texture coordinatés andr replaced

with s/q, t/q, andr/q, respectively. Ifg is less than or equal to zero, the results
are undefined.

Not all widths need be supported when point antialiasing is on, but the width
1.0 must be provided. If an unsupported width is requested, the nearest supported
width is used instead. The range of supported widths and the width of evenly-
spaced gradations within that range are implementation dependent. The range and
gradations may be obtained using the query mechanism described in Ghdfiter
for instance, the width range is from 0.1 to 2.0 and the gradation width is 0.1, then

Version 1.4 - July 24, 2002

3.3. POINTS

69

6.0

5.0

4.0

3.0

2.0

1.0

s' """""
x %/
_______ _ x

Figure 3.3. Rasterization of antialiased wide points. The black dot indicates the

point to be rasterized. The shaded region has the specified width. The X marks
indicate those fragment centers produced by rasterization. A fragment’s computed
coverage value is based on the portion of the shaded region that covers the corre-
sponding fragment square. Solid lines lie on integer coordinates.

Version 1.4 - July 24, 2002

70 CHAPTER 3. RASTERIZATION

the widths0.1,0.2,...,1.9,2.0 are supported.

3.3.2 Point Rasterization State

The state required to control point rasterization consists of one floating-point value
specifying the point width, three floating point values specifying the minimum and
maximum point size and the point fade threshold size, three floating point values
specifying the distance attenuation coefficients, and a bit indicating whether or not
antialiasing is enabled.

3.3.3 Point Multisample Rasterization

If MULTISAMPLEHS enabled, and the value BAMPLEBUFFERSS one, then points
are rasterized using the following algorithm, regardless of whether point antialias-
ing (POINT_SMOOTHis enabled or disabled. Point rasterization produces a frag-
ment for each framebuffer pixel with one or more sample points that intersect the
region lying within the circle having diameter equal to the current point width and
centered at the point'&c,,, y,,). Coverage bits that correspond to sample points
that intersect the circular region are 1, other coverage bits are 0. All data associ-
ated with each sample for the fragment are the data associated with the point being
rasterized.

Point size range and number of gradations are equivalent to those supported for
antialiased points.

3.4 Line Segments

A line segment results from a line stripegi/End object, a line loop, or a se-
ries of separate line segments. Line segment rasterization is controlled by several
variables. Line width, which may be set by calling

void LineWidth (float width);

with an appropriate positive floating-point width, controls the width of rasterized
line segments. The default width is0. Values less than or equal 60 generate
the errorINVALID VALUE Antialiasing is controlled withEnable and Disable
using the symbolic constabtNE _SMOOTH-inally, line segments may be stippled.
Stippling is controlled by a GL command that setstipple patternsee below).

Version 1.4 - July 24, 2002

3.4. LINE SEGMENTS 71

3.4.1 Basic Line Segment Rasterization

Line segment rasterization begins by characterizing the segment asxeittegor

or y-major. z-major line segments have slope in the closed inteval 1]; all
other line segments agemajor (slope is determined by the segment’s endpoints).
We shall specify rasterization only farmajor segments except in cases where the
modifications fory-major segments are not self-evident.

Ideally, the GL uses a “diamond-exit” rule to determine those fragments that
are produced by rasterizing a line segment. For each fragfeith center at win-
dow coordinates ; andy, define a diamond-shaped region that is the intersection
of four half planes:

Ry ={(2,y) ||z —xs|+ |y —ys| <1/2.}

Essentially, a line segment startingmtand ending ap,, produces those frag-
mentsf for which the segment intersedi, except ifp; is contained inZ;. See
figure3.4.

To avoid difficulties when an endpoint lies on a boundaryzgfwe (in princi-
ple) perturb the supplied endpoints by a tiny amount. pgaindp, have window
coordinatesz,, y,) and(zs, yp), respectively. Obtain the perturbed endpoipfs
given by (x4, ya) — (€, €2) andpj, given by (zy, y») — (€, €?). Rasterizing the line
segment starting ai, and ending ap;, produces those fragmentsor which the
segment starting ai,, and ending orp;, intersectsk ¢, except ifp;, is contained in
Ry. e is chosen to be so small that rasterizing the line segment produces the same
fragments when is substituted foe for any0 < 6 < e.

Whenp, andp, lie on fragment centers, this characterization of fragments
reduces to Bresenham’s algorithm with one modification: lines produced in this
description are “half-open,” meaning that the final fragment (correspondipg) to
is not drawn. This means that when rasterizing a series of connected line segments,
shared endpoints will be produced only once rather than twice (as would occur with
Bresenham’s algorithm).

Because the initial and final conditions of the diamond-exit rule may be difficult
to implement, other line segment rasterization algorithms are allowed, subject to
the following rules:

1. The coordinates of a fragment produced by the algorithm may not deviate by
more than one unit in eitharor y window coordinates from a corresponding
fragment produced by the diamond-exit rule.

2. The total number of fragments produced by the algorithm may differ from
that produced by the diamond-exit rule by no more than one.

Version 1.4 - July 24, 2002

72 CHAPTER 3. RASTERIZATION

Figure 3.4. Visualization of Bresenham’s algorithm. A portion of a line segment is
shown. A diamond shaped region of height 1 is placed around each fragment center;
those regions that the line segment exits cause rasterization to produce correspond-
ing fragments.

3. For anz-major line, no two fragments may be produced that lie in the same
window-coordinate column (for g-major line, no two fragments may ap-
pear in the same row).

4. If two line segments share a common endpoint, and both segments are either
x-major (both left-to-right or both right-to-left) af-major (both bottom-to-
top or both top-to-bottom), then rasterizing both segments may not produce
duplicate fragments, nor may any fragments be omitted so as to interrupt
continuity of the connected segments.

Next we must specify how the data associated with each rasterized fragment
are obtained. Let the window coordinates of a produced fragment center be given

by pr = (x4, ya) and letp, = (x4,ya) andpy = (s, yp). Set

(Pr —Pa) - (Po — Pa) (3.3)

t =
Py — Pall?

(Note thatt = 0 atp, andt = 1 atp,.) The value of an associated datynfor
the fragment, whether it be primary or secondary R, G, B, or A (in RGBA mode)
or a color index (in color index mode), the fog coordinate, orghg or r texture

Version 1.4 - July 24, 2002

3.4. LINE SEGMENTS 73

coordinate (the depth value, windowwmust be found using equati@ns, below),
is found as

(1 - 75)fa/wa + tfb/wb
(1 —t)ag/we + tap/wy
where f, and f, are the data associated with the starting and ending endpoints of
the segment, respectively;, andw, are the clipw coordinates of the starting

and ending endpoints of the segments, respectively.= «, = 1 for all data
except texture coordinates, in which casge = ¢, anday, = ¢, (g, andg, are

the homogeneous texture coordinates at the starting and ending endpoints of the
segment; results are undefined if either of these is less than or equal to 0). Note
that linear interpolation would use

f=0=t)fu/aa+tfo/a. (3.5

The reason that this formula is incorrect (except for the depth value) is that it inter-
polates a datum in window space, which may be distorted by perspective. What is
actually desired is to find the corresponding value when interpolated in clip space,
which equatior8.4does. A GL implementation may choose to approximate equa-
tion 3.4with 3.5, but this will normally lead to unacceptable distortion effects when
interpolating texture coordinates.

f=

(3.4)

3.4.2 Other Line Segment Features

We have just described the rasterization of non-antialiased line segments of width
one using the default line stipple &fF' F F16. We now describe the rasterization
of line segments for general values of the line segment rasterization parameters.

Line Stipple

The command
void LineStipple(int factor, ushort pattern);

defines dine stipple patternis an unsigned short integer. Tliee stippleis taken
from the lowest order 16 bits gdattern It determines those fragments that are
to be drawn when the line is rasterizeféctor is a count that is used to modify
the effective line stipple by causing each bitiime stippleto be usedactortimes.
factor is clamped to the randé, 256]. Line stippling may be enabled or disabled
usingEnable or Disablewith the constantINE _STIPPLE. When disabled, itis as

if the line stipple has its default value.

Version 1.4 - July 24, 2002

74 CHAPTER 3. RASTERIZATION

Line stippling masks certain fragments that are produced by rasterization so
that they are not sent to the per-fragment stage of the GL. The masking is achieved
using three parameters: the 16-bit line stipplehe line repeat count, and an
integer stipple countet. Let

b= |s/r] mod 16,

Then a fragment is produced if tihéh bit of p is 1, and not produced otherwise.
The bits ofp are numbered witl) being the least significant anid being the

most significant. The initial value of is zero;s is incremented after production

of each fragment of a line segment (fragments are produced in order, beginning at
the starting point and working towards the ending poist)s reset to 0 whenever
aBeginoccurs, and before every line segment in a group of independent segments
(as specified wheBeginis invoked withLINES).

If the line segment has been clipped, then the valueatfthe beginning of the
line segment is indeterminate.

Wide Lines

The actual width of non-antialiased lines is determined by rounding the supplied
width to the nearest integer, then clamping it to the implementation-dependent
maximum non-antialiased line width. This implementation-dependent value must
be no less than the implementation-dependent maximum antialiased line width,
rounded to the nearest integer value, and in any event no les$.tharounding

the specified width results in the valQgthen it is as if the value werk

Non-antialiased line segments of width other than one are rasterized by off-
setting them in the minor direction (for armajor line, the minor direction is
y, and for ay-major line, the minor direction ig) and replicating fragments in
the minor direction (see figurg.5). Let w be the width rounded to the nearest
integer (ifw = 0, then itis as ifw = 1). If the line segment has endpoints
given by(xg, yo) and(z1, y1) in window coordinates, the segment with endpoints
(xo,y0 — (w—1)/2) and(x1,y1 — (w—1)/2) is rasterized, but instead of a single
fragment, a column of fragments of height(a row of fragments of length for
a y-major segment) is produced at eachfy for y-major) location. The lowest
fragment of this column is the fragment that would be produced by rasterizing the
segment of width 1 with the modified coordinates. The whole column is not pro-
duced if the stipple bit for the columnis location is zero; otherwise, the whole
column is produced.

Version 1.4 - July 24, 2002

3.4. LINE SEGMENTS 75

width =2 width =3

Figure 3.5. Rasterization of non-antialiased wide lines. x-major line segments are
shown. The heavy line segment is the one specified to be rasterized; the light seg-
ment is the offset segment used for rasterization. x marks indicate the fragment
centers produced by rasterization.

Antialiasing

Rasterized antialiased line segments produce fragments whose fragment squares
intersect a rectangle centered on the line segment. Two of the edges are parallel to
the specified line segment; each is at a distance of one-half the current width from
that segment: one above the segment and one below it. The other two edges pass
through the line endpoints and are perpendicular to the direction of the specified
line segment. Coverage values are computed for each fragment by computing the
area of the intersection of the rectangle with the fragment square (see 3igure

see also sectiod.2). Equation3.4is used to compute associated data values just as
with non-antialiased lines; equati@3is used to find the value a@ffor each frag-

ment whose square is intersected by the line segment’s rectangle. Not all widths
need be supported for line segment antialiasing, but widtlntialiased segments

must be provided. As with the point width, a GL implementation may be queried
for the range and number of gradations of available antialiased line widths.

For purposes of antialiasing, a stippled line is considered to be a sequence of
contiguous rectangles centered on the line segment. Each rectangle has width equal
to the current line width and length equal to 1 pixel (except the last, which may be
shorter). These rectangles are numbered fooim , starting with the rectangle

Version 1.4 - July 24, 2002

76 CHAPTER 3. RASTERIZATION

Figure 3.6. The region used in rasterizing and finding corresponding coverage val-
ues for an antialiased line segment (an x-major line segment is shown).

incident on the starting endpoint of the segment. Each of these rectangles is ei-
ther eliminated or produced according to the procedure given underStipple,
above, where “fragment” is replaced with “rectangle.” Each rectangle so produced
is rasterized as if it were an antialiased polygon, described below (but culling, non-
default settings oPolygonMode and polygon stippling are not applied).

3.4.3 Line Rasterization State

The state required for line rasterization consists of the floating-point line width, a
16-bit line stipple, the line stipple repeat count, a bit indicating whether stippling
is enabled or disabled, and a bit indicating whether line antialiasing is on or off.
In addition, during rasterization, an integer stipple counter must be maintained to
implement line stippling. The initial value of the line widthlig). The initial value

of the line stipple isF'F'F'F4 (a stipple of all ones). The initial value of the line
stipple repeat count is one. The initial state of line stippling is disabled. The initial
state of line segment antialiasing is disabled.

3.4.4 Line Multisample Rasterization

If MULTISAMPLEs enabled, and the value BAMPLEBUFFERSs one, then lines
are rasterized using the following algorithm, regardless of whether line antialiasing
(LINE _SMOOTHs enabled or disabled. Line rasterization produces a fragment for

Version 1.4 - July 24, 2002

3.5. POLYGONS 77

each framebuffer pixel with one or more sample points that intersect the rectangular
region that is described in th&ntialiasing portion of section3.4.2 (Other Line
Segment Features). If line stippling is enabled, the rectangular region is subdivided
into adjacent unit-length rectangles, with some rectangles eliminated according to
the procedure given in secti@¥.2 where “fragment” is replaced by “rectangle”.
Coverage bits that correspond to sample points that intersect a retained rectan-
gle are 1, other coverage bits are 0. Each color, depth, and set of texture coordinates
is produced by substituting the corresponding sample location into equafion
then using the result to evaluate equatioh An implementation may choose to
assign the same color value and the same set of texture coordinates to more than
one sample by evaluating equatidrB at any location within the pixel including
the fragment center or any one of the sample locations, then substituting into equa-
tion 3.4. The color value and the set of texture coordinates need not be evaluated
at the same location.
Line width range and number of gradations are equivalent to those supported
for antialiased lines.

3.5 Polygons

A polygon results from a polygoBegin/End object, a triangle resulting from a
triangle strip, triangle fan, or series of separate triangles, or a quadrilateral arising
from a quadrilateral strip, series of separate quadrilaterals,Rechcommand.

Like points and line segments, polygon rasterization is controlled by several vari-
ables. Polygon antialiasing is controlled wHmable and Disable with the sym-

bolic constanPOLYGONSMOOTHThe analog to line segment stippling for poly-
gons is polygon stippling, described below.

3.5.1 Basic Polygon Rasterization

The first step of polygon rasterization is to determine if the polygdmagk facing

or front facing This determination is made by examining the sign of the area com-
puted by equatiof.6 of section2.13.1(including the possible reversal of this sign
as indicated by the last call terontFace). If this sign is positive, the polygon is
frontfacing; otherwise, it is back facing. This determination is used in conjunction
with the CullFace enable bit and mode value to decide whether or not a particular
polygon is rasterized. TheullFace mode is set by calling

void CullFace(enum mode);

modeis a symbolic constant: one #RONT BACKor FRONTANDBACK Culling
is enabled or disabled wittEnable or Disable using the symbolic constant

Version 1.4 - July 24, 2002

78 CHAPTER 3. RASTERIZATION

CULLFACE Front facing polygons are rasterized if either culling is disabled or
the CullFace mode isBACKwhile back facing polygons are rasterized only if ei-
ther culling is disabled or th€ullFace mode isFRONT The initial setting of the
CullFace mode isBACK Initially, culling is disabled.

The rule for determining which fragments are produced by polygon rasteriza-
tion is calledpoint sampling The two-dimensional projection obtained by taking
the x andy window coordinates of the polygon’s vertices is formed. Fragment
centers that lie inside of this polygon are produced by rasterization. Special treat-
ment is given to a fragment whose center lies on a polygon boundary edge. In
such a case we require that if two polygons lie on either side of a common edge
(with identical endpoints) on which a fragment center lies, then exactly one of the
polygons results in the production of the fragment during rasterization.

As for the data associated with each fragment produced by rasterizing a poly-
gon, we begin by specifying how these values are produced for fragments in a
triangle. Definebarycentric coordinatefor a triangle. Barycentric coordinates are
a set of three numbers, b, andc, each in the rangf, 1], witha + b + ¢ = 1.
These coordinates uniquely specify any pgintithin the triangle or on the trian-
gle’s boundary as

P = apq + bpy + cpe,

wherep,, pp, andp, are the vertices of the triangle, b, andc can be found as

_ A(ppbpc) h— A(ppapc) _ A(ppapb)

A(papbpe)’ A(papbpe)’ A(papbpe)’

whereA (Imn) denotes the area in window coordinates of the triangle with vertices
[, m, andn.

Denote a datum at,, py, Of p. s fa, fp, OF f¢, respectively. Then the valué
of a datum at a fragment produced by rasterizing a triangle is given by

f o afa/wa + bfb/wb + Cfc/wc
aag/w, + bay/wy + co/we

wherew,, w, andw, are the clipw coordinates op,, py, andp., respectively.
a, b, andc are the barycentric coordinates of the fragment for which the data are
produceda, = ap = a. = 1 except for texture, ¢, andr coordinates, for which
Qq = Ga, @ = qp, &anda,. = ¢, (if any of ¢, g3, Or g. are less than or equal
to zero, results are undefined), b, andc must correspond precisely to the exact
coordinates of the center of the fragment. Another way of saying this is that the
data associated with a fragment must be sampled at the fragment’s center.

Just as with line segment rasterization, equafidimay be approximated by

f = afa/aa + bfb/ab + Cfc/ac§

(3.6)

Version 1.4 - July 24, 2002

3.5. POLYGONS 79

this may vyield acceptable results for color valuestiistbe used for depth val-
ues), but will normally lead to unacceptable distortion effects if used for texture
coordinates.

For a polygon with more than three edges, we require only that a convex com-
bination of the values of the datum at the polygon’s vertices can be used to obtain
the value assigned to each fragment produced by the rasterization algorithm. That
is, it must be the case that at every fragment

f=>aif;
=1

wheren is the number of vertices in the polygof,is the value of thef at vertex
i; foreachi 0 < a; < 1 and}_ ! ; a; = 1. The values of the; may differ from
fragment to fragment, but at vertéxa; = 0,5 # i anda; = 1.

One algorithm that achieves the required behavior is to triangulate a polygon
(without adding any vertices) and then treat each triangle individually as already
discussed. A scan-line rasterizer that linearly interpolates data along each edge
and then linearly interpolates data across each horizontal span from edge to edge
also satisfies the restrictions (in this case, the numerator and denominator of equa-
tion 3.6 should be iterated independently and a division performed for each frag-
ment).

3.5.2 Stippling

Polygon stippling works much the same way as line stippling, masking out certain
fragments produced by rasterization so that they are not sent to the next stage of
the GL. This is the case regardless of the state of polygon antialiasing. Stippling is
controlled with

void PolygonStipplg ubyte *pattern);

patternis a pointer to memory into which3 x 32 pattern is packed. The pattern
is unpacked from memory according to the procedure given in se8tid for
DrawPixels; it is as if theheightandwidth passed to that command were both equal
to 32, thetypewere BITMAP, and theformatwere COLORNDEX. The unpacked
values (before any conversion or arithmetic would have been performed) form a
stipple pattern of zeros and ones.

If z,, andy, are the window coordinates of a rasterized polygon fragment,
then that fragment is sent to the next stage of the GL if and only if the bit of the
pattern(x,, mod 32, y,, mod 32) is 1.

Version 1.4 - July 24, 2002

80 CHAPTER 3. RASTERIZATION

Polygon stippling may be enabled or disabled vihable or Disable using
the constanPOLYGOMNSTIPPLE. When disabled, it is as if the stipple pattern were
all ones.

3.5.3 Antialiasing

Polygon antialiasing rasterizes a polygon by producing a fragment wherever the
interior of the polygon intersects that fragment’s square. A coverage value is com-
puted at each such fragment, and this value is saved to be applied as described
in section3.11 An associated datum is assigned to a fragment by integrating the
datum’s value over the region of the intersection of the fragment square with the
polygon’s interior and dividing this integrated value by the area of the intersection.
For a fragment square lying entirely within the polygon, the value of a datum at the
fragment’s center may be used instead of integrating the value across the fragment.
Polygon stippling operates in the same way whether polygon antialiasing is
enabled or not. The polygon point sampling rule defined in se@tibr, however,
is not enforced for antialiased polygons.

3.5.4 Options Controlling Polygon Rasterization

The interpretation of polygons for rasterization is controlled using
void PolygonModdg enumface enum mode);

faceis one of FRONT BACK or FRONTANDBACK indicating that the rasterizing
method described bsodereplaces the rasterizing method for front facing poly-
gons, back facing polygons, or both front and back facing polygons, respectively.
modeis one of the symbolic constan®OINT, LINE, or FILL . Calling Polygon-

Mode with POINT causes certain vertices of a polygon to be treated, for rasteriza-
tion purposes, just as if they were enclosed withBegin(POINT) andEnd pair.

The vertices selected for this treatment are those that have been tagged as having a
polygon boundary edge beginning on them (see setior). LINE causes edges

that are tagged as boundary to be rasterized as line segments. (The line stipple
counter is reset at the beginning of the first rasterized edge of the polygon, but
not for subsequent edge&IiLL is the default mode of polygon rasterization, cor-
responding to the description in sectiah$.], 3.5.2 and3.5.3 Note that these
modes affect only the final rasterization of polygons: in particular, a polygon’s ver-
tices are lit, and the polygon is clipped and possibly culled before these modes are
applied.

Version 1.4 - July 24, 2002

3.5. POLYGONS 81

Polygon antialiasing applies only to theLL state ofPolygonMode For
POINT or LINE, point antialiasing or line segment antialiasing, respectively, ap-

ply.

3.5.5 Depth Offset

The depth values of all fragments generated by the rasterization of a polygon may
be offset by a single value that is computed for that polygon. The function that
determines this value is specified by calling

void PolygonOffse(float factor, float units);

factor scales the maximum depth slope of the polygon, anitls scales an im-
plementation dependent constant that relates to the usable resolution of the depth
buffer. The resulting values are summed to produce the polygon offset value. Both
factor andunitsmay be either positive or negative.

The maximum depth slope of a triangle is

N EEE)

where(x.,, yu, 2w) IS @ point on the trianglen may be approximated as

Oz

Oy

Oz
M

)

m = max{ } . (3.8)

If the polygon has more than three vertices, one or more valuesrofy be used
during rasterization. Each may take any value in the range jmax], wheremin
andmazx are the smallest and largest values obtained by evaluating Equiation
or Equation3.8for the triangles formed by all three-vertex combinations.

The minimum resolvable differengeis an implementation constant. It is the
smallest difference in window coordinatevalues that is guaranteed to remain
distinct throughout polygon rasterization and in the depth buffer. All pairs of frag-
ments generated by the rasterization of two polygons with otherwise identical ver-
tices, butz,, values that differ by, will have distinct depth values.

The offset value for a polygon is

0 =m* factor + r * units. (3.9)

m IS computed as described above, as a function of depth values in the range [0,1],
ando is applied to depth values in the same range.

Version 1.4 - July 24, 2002

82 CHAPTER 3. RASTERIZATION

Boolean state valugaOLYGONFFSETPOINT, POLYGONFFSETLINE, and
POLYGOMNFFSETFILL determine whetheo is applied during the rasterization
of polygons inPOINT, LINE, andFILL modes. These boolean state values are
enabled and disabled as argument values to the comnkaradde andDisable. If
POLYGONDFFSETPOINT is enabledyp is added to the depth value of each frag-
ment produced by the rasterization of a polygorP@INT mode. Likewise, if
POLYGONDFFSETLINE or POLYGONFFSETFILL is enabledyp is added to the
depth value of each fragment produced by the rasterization of a polygdNEn
or FILL modes, respectively.

Fragment depth values are always limited to the range [0,1], either by clamping
after offset addition is performed (preferred), or by clamping the vertex values used
in the rasterization of the polygon.

3.5.6 Polygon Multisample Rasterization

If MULTISAMPLHES enabled and the value SAMPLEBUFFERSS one, then poly-

gons are rasterized using the following algorithm, regardless of whether polygon
antialiasing POLYGOMNSMOOTHS enabled or disabled. Polygon rasterization pro-
duces a fragment for each framebuffer pixel with one or more sample points that
satisfy the point sampling criteria described in secfidn], including the special
treatment for sample points that lie on a polygon boundary edge. If a polygon is
culled, based on its orientation and tBallFace mode, then no fragments are pro-
duced during rasterization. Fragments are culled by the polygon stipple just as they
are for aliased and antialiased polygons.

Coverage bits that correspond to sample points that satisfy the point sampling
criteria are 1, other coverage bits are 0. Each color, depth, and set of texture co-
ordinates is produced by substituting the corresponding sample location into the
barycentric equations described in sectiob.], using the approximation to equa-
tion 3.6 that omitsw components. An implementation may choose to assign the
same color value and the same set of texture coordinates to more than one sample
by barycentric evaluation using any location with the pixel including the fragment
center or one of the sample locations. The color value and the set of texture coor-
dinates need not be evaluated at the same location.

The rasterization described above applies only torthe state ofPolygon-
Mode. For POINT andLINE, the rasterizations described in secti@n3.3(Point
Multisample Rasterization) and.4.4(Line Multisample Rasterization) apply.

Version 1.4 - July 24, 2002

3.6. PIXEL RECTANGLES 83

3.5.7 Polygon Rasterization State

The state required for polygon rasterization consists of a polygon stipple pattern,
whether stippling is enabled or disabled, the current state of polygon antialiasing
(enabled or disabled), the current values of BtaygonMode setting for each of

front and back facing polygons, whether point, line, and fill mode polygon offsets
are enabled or disabled, and the factor and bias values of the polygon offset equa-
tion. The initial stipple pattern is all ones; initially stippling is disabled. The initial
setting of polygon antialiasing is disabled. The initial stateFolygonModeis

FILL for both front and back facing polygons. The initial polygon offset factor
and bias values are both 0; initially polygon offset is disabled for all modes.

3.6 Pixel Rectangles

Rectangles of color, depth, and certain other values may be converted to fragments
using theDrawPixels command (described in secti@n6.4. Some of the param-
eters and operations governing the operatioDi@wPixels are shared bjRrRead-
Pixels (used to obtain pixel values from the framebuffer) &wpyPixels(used to
copy pixels from one framebuffer location to another); the discussiéteatiPix-
elsandCopyPixels however, is deferred until Chaptémafter the framebuffer has
been discussed in detail. Nevertheless, we note in this section when parameters
and state pertaining tDrawPixels also pertain tdreadPixelsor CopyPixels

A number of parameters control the encoding of pixels in client memory (for
reading and writing) and how pixels are processed before being placed in or after
being read from the framebuffer (for reading, writing, and copying). These param-
eters are set with three comman@sxelStore, PixelTransfer, andPixelMap.

3.6.1 Pixel Storage Modes

Pixel storage modes affect the operatiobodwPixelsandReadPixels(as well as
other commands; see sectidhs.2, 3.7, and3.8) when one of these commands is
issued. This may differ from the time that the command is executed if the command
is placed in a display list (see sectibr). Pixel storage modes are set with

void PixelStore{if }(enumpnameT param);
pnameis a symbolic constant indicating a parameter to be set,panamis the
value to set it to. Tabl&.1 summarizes the pixel storage parameters, their types,

their initial values, and their allowable ranges. Setting a parameter to a value out-
side the given range results in the enfeWALID VALUE

Version 1.4 - July 24, 2002

84 CHAPTER 3. RASTERIZATION

Parameter Name | Type | Initial Value | Valid Range |
UNPACKSWABBYTES boolean FALSE TRUHEFALSE
UNPACKLSB_FIRST boolean| FALSE | TRUHFALSE
UNPACKROWLENGTH integer 0 [0, 00)
UNPACKSKIP _ROWS integer 0 [0, 00)
UNPACKSKIP _PIXELS integer 0 [0, 00)
UNPACKALIGNMENT integer 4 1,2,4,8
UNPACKIMAGEHEIGHT | integer 0 [0, 00)
UNPACKSKIP _IMAGES integer 0 [0, 00)

Table 3.1:PixelStore parameters pertaining to one or moreDyhwPixels, Col-
orTable, ColorSubTable, ConvolutionFilterlD, ConvolutionFilter2D, Separa-
bleFilter2D, PolygonStipple TexlmagelD TexIlmage2D Teximage3D, Tex-
SublmagelD TexSublmage2D andTexSublmage3D

The version ofPixelStore that takes a floating-point value may be used to
set any type of parameter; if the parameter is boolean, then it is $&USBE if
the passed value 80 and TRUEotherwise, while if the parameter is an integer,
then the passed value is rounded to the nearest integer. The integer version of
the command may also be used to set any type of parameter; if the parameter is
boolean, then it is set tBALSE if the passed value & andTRUEotherwise, while
if the parameter is a floating-point value, then the passed value is converted to
floating-point.

3.6.2 The Imaging Subset

Some pixel transfer and per-fragment operations are only made available in GL
implementations which incorporate the optiomalaging subset The imaging
subset includes both new commands, and new enumerants allowed as parame-
ters to existing commands. If the subset is supporédyf these calls and enu-
merants must be implemented as described later in the GL specification. If the
subset is not supported, calling any unsupported command generates the error
INVALID _OPERATION and using any of the new enumerants generates the error
INVALID _ENUM

The individual operations available only in the imaging subset are described in
section3.6.3 Imaging subset operations include:

1. Color tables, including all commands and enumerants described in sub-
sectionsColor Table Specification Alternate Color Table Specification

Version 1.4 - July 24, 2002

3.6. PIXEL RECTANGLES 85

Commands Color Table State and Proxy State Color Table Lookup,
Post Convolution Color Table Lookup, andPost Color Matrix Color Ta-
ble Lookup, as well as the query commands described in seétibry.

2. Convolution, including all commands and enumerants described in sub-
sectionsConvolution Filter Specification, Alternate Convolution Filter
Specification Commands and Convolution, as well as the query com-
mands described in sectiénl.8

3. Color matrix, including all commands and enumerants described in subsec-
tions Color Matrix Specification and Color Matrix Transformation , as
well as the simple query commands described in seéibri

4. Histogram and minmayx, including all commands and enumerants described
in subsectionsHistogram Table Specification Histogram State and
Proxy State Histogram, Minmax Table Specification andMinmax, as
well as the query commands described in sedfidn9and sectior6.1.10

The imaging subset is supported only if BBETENSIONSstring includes the
substring’ARB_imaging" . QueryingEXTENSIONSSs described in sectiof.1.11

If the imaging subset is not supported, the related pixel transfer operations are
not performed; pixels are passed unchanged to the next operation.

3.6.3 Pixel Transfer Modes

Pixel transfer modes affect the operatiorDohiwPixels (section3.6.4), ReadPix-

els (section4.3.2, andCopyPixels(section4.3.3 at the time when one of these
commands is executed (which may differ from the time the command is issued).
Some pixel transfer modes are set with

void PixelTransfer{if }(enumparam T value);

paramis a symbolic constant indicating a parameter to be setyalugtis the value
to set it to. Table3.2 summarizes the pixel transfer parameters that are set with
PixelTransfer, their types, their initial values, and their allowable ranges. Setting
a parameter to a value outside the given range results in thegwaLID VALUE
The same versions of the command exist asHixelStore, and the same rules
apply to accepting and converting passed values to set parameters.

The pixel map lookup tables are set with

void PixelMap{ui us f}v(enummap sizei size T values);

Version 1.4 - July 24, 2002

86 CHAPTER 3. RASTERIZATION

Parameter Name | Type | Initial Value | Valid Range |
MARCOLOR boolean FALSE TRUEFALSE
MARSTENCIL boolean FALSE TRUEFALSE
INDEX_SHIFT integer 0 (—o0,00)
INDEX_OFFSET integer 0 (—00,00)
z_SCALE float 1.0 (— oo,oo)
DEPTHSCALE float 1.0 (=00, 0)
z_BIAS float 0.0 (—00, 00)
DEPTHBIAS float 0.0 (=00, 0)
POSTCONVOLUTION:_SCALE float 1.0 (—00, 00)
POSTCONVOLUTION: _BIAS float 0.0 (—00, 00)
POSTCOLORMATRIX2_SCALE| float 1.0 (— oo,oo)
POSTCOLORMATRIX 2 BIAS float 0.0 (—o0, 0)

Table 3.2:PixelTransfer parameterse: is REQ GREENBLUE, or ALPHA

mapis a symbolic map name, indicating the map to seteindicates the size of
the map, andaluesis a pointer to an array afizemap values.

The entries of a table may be specified using one of three types: single-
precision floating-point, unsigned short integer, or unsigned integer, depending on
which of the three versions d?ixelMap is called. A table entry is converted
to the appropriate type when it is specified. An entry giving a color component
value is converted according to tali’es. An entry giving a color index value
is converted from an unsigned short integer or unsigned integer to floating-point.
An entry giving a stencil index is converted from single-precision floating-point
to an integer by rounding to nearest. The various tables and their initial sizes
and entries are summarized in tallle. A table that takes an index as an ad-
dress must haveize = 2" or the erroiNVALID VALUEresults. The maximum
allowablesize of each table is specified by the implementation dependent value
MAXPIXEL _MAPTABLE, but must be at least 32 (a single maximum applies to all
tables). The erroNVALID _VALUEIs generated if aizelarger than the imple-
mented maximum, or less than one, is giveiPixelMap.

Color Table Specification

Color lookup tables are specified with

void ColorTable(enumtarget enum internalformat
sizei width, enum format enum type void *data);

Version 1.4 - July 24, 2002

3.6. PIXEL RECTANGLES 87

| Map Name | Address | Value | Init. Size | Init. Value |

PIXEL _MAPI _TQl coloridx | coloridx 1 0.0
PIXEL _MAPS_TOS || stencil idx | stencil idx 1 0

PIXEL _MAPI _TOR || coloridx R 1 0.0
PIXEL _MAPI _TO.G || color idx G 1 0.0
PIXEL _MAPI _TOB || color idx B 1 0.0
PIXEL _MARI _TOA color idx A 1 0.0
PIXEL _MARPR.TOR R R 1 0.0
PIXEL _MARG.TOG G G 1 0.0
PIXEL _MAPB_TO.B B B 1 0.0
PIXEL _MARA_TOA A A 1 0.0

Table 3.3:PixelMap parameters.

target must be one of theegular color table names listed in tabk4 to define

the table. Aproxy table name is a special case discussed later in this section.
width, format, type anddata specify an image in memory with the same mean-
ing and allowed values as the corresponding argumenizdwPixels (see sec-

tion 3.6.4), with heighttaken to be 1. The maximum allowabigdth of a table

is implementation-dependent, but must be at least 32 fdineais COLORNDEX,
DEPTHCOMPONEN&NASTENCIL_INDEX and thetypeBITMAP are not allowed.

The specified image is taken from memory and processed jusdDeaifPixels
were called, stopping after the final expansion to RGBA. The R, G, B, and A com-
ponents of each pixel are then scaled by the @DLORTABLE SCALEparameters,
biased by the fouCOLORTABLE BIAS parameters, and clamped[th 1]. These
parameters are set by calli@plorTableParameterfv as described below.

Components are then selected from the resulting R, G, B, and A values to
obtain a table with théase internal formaspecified by (or derived frompter-
nalformat in the same manner as for textures (secdhl). internalformatmust
be one of the formats in tabk150r table3.16 other than th®EPTHformats in
those tables.

The color lookup table is redefined to hawelth entries, each with the speci-
fied internal format. The table is formed with indicgthroughwidth — 1. Table
locationi is specified by théth image pixel, counting from zero.

The errorINVALID _VALUEIs generated ifvidth is not zero or a non-negative
power of two. The erroTABLETOQLARGEIs generated if the specified color
lookup table is too large for the implementation.

The scale and bias parameters for a table are specified by calling

Version 1.4 - July 24, 2002

88 CHAPTER 3. RASTERIZATION

Table Name | Type |

COLORTABLE regular
POSTCONVOLUTIONCOLORTABLE
POSTCOLORMATRIX COLORTABLE
PROXYCOLORTABLE proxy
PROXYPOSTCONVOLUTIONCOLORTABLE
PROXYPOSTCOLORMATRIX COLORTABLE

Table 3.4: Color table names. Regular tables have associated image data. Proxy
tables have no image data, and are used only to determine if an image can be loaded
into the corresponding regular table.

void ColorTableParameter{if }v(enumtarget enum pname
T params);

targetmust be a regular color table nanmmameis one of COLORTABLE SCALE
or COLORTABLEBIAS. paramspoints to an array of four values: red, green, blue,
and alpha, in that order.

A GL implementation may vary its allocation of internal component resolution
based on angZolorTable parameter, but the allocation must not be a function of
any other factor, and cannot be changed once it is established. Allocations must
be invariant; the same allocation must be made each time a color table is specified
with the same parameter values. These allocation rules also apply to proxy color
tables, which are described later in this section.

Alternate Color Table Specification Commands

Color tables may also be specified using image data taken directly from the frame-
buffer, and portions of existing tables may be respecified.
The command

void CopyColorTable(enumtarget enum internalformat
int x,int vy, sizei width);

defines a color table in exactly the mannerGuflorTable, except that table data
are taken from the framebuffer, rather than from client memtamget must be a
regular color table name, y, andwidth correspond precisely to the corresponding
arguments ofCopyPixels (refer to sectiont.3.3; they specify the image'width
and the lower lef{x, y) coordinates of the framebuffer region to be copied. The

Version 1.4 - July 24, 2002

3.6. PIXEL RECTANGLES 89

image is taken from the framebuffer exactly as if these arguments were passed to
CopyPixelswith argumentypeset toCOLORandheightset to 1, stopping after the
final expansion to RGBA.

Subsequent processing is identical to that describe@dtrrTable, beginning
with scaling byCOLORTABLE SCALE Parametertarget internalformatandwidth
are specified using the same values, with the same meanings, as the equivalent
arguments o€ColorTable. formatis taken to beRGBA

Two additional commands,

void ColorSubTable(enumtarget sizei start, sizei count
enumformat enum type void *data);

void CopyColorSubTablg enumtarget sizei start, int X,
int vy, sizei count);

respecify only a portion of an existing color table. No change is made tintie
nalformator width parameters of the specified color table, nor is any change made
to table entries outside the specified portidarget must be a regular color table
name.

ColorSubTable argumentdormat type anddatamatch the corresponding ar-
guments toColorTable, meaning that they are specified using the same values,
and have the same meanings. LikewiSepyColorSubTablearguments, y, and
countmatch thex, y, andwidth arguments o€opyColorTable. Both of theColor-
SubTable commands interpret and process pixel groups in exactly the manner of
their ColorTable counterparts, except that the assignment of R, G, B, and A pixel
group values to the color table components is controlled bynteenalformatof
the table, not by an argument to the command.

Argumentsstartandcountof ColorSubTable andCopyColorSubTablespec-
ify a subregion of the color table starting at indstart and ending at index
start + count — 1. Counting from zero, theth pixel group is assigned to the
table entry with indexcount + n. The errorINVALID _VALUE is generated if
start + count > width.

Color Table State and Proxy State

The state necessary for color tables can be divided into two categories. For each
of the three tables, there is an array of values. Each array has associated with it
a width, an integer describing the internal format of the table, six integer values
describing the resolutions of each of the red, green, blue, alpha, luminance, and
intensity components of the table, and two groups of four floating-point numbers to
store the table scale and bias. Each initial array is null (zero width, internal format

Version 1.4 - July 24, 2002

90 CHAPTER 3. RASTERIZATION

RGBA with zero-sized components). The initial value of the scale parameters is
(1,1,1,1) and the initial value of the bias parameters is (0,0,0,0).

In addition to the color lookup tables, partially instantiated proxy color lookup
tables are maintained. Each proxy table includes width and internal format state
values, as well as state for the red, green, blue, alpha, luminance, and intensity
component resolutions. Proxy tables do not include image data, nor do they in-
clude scale and bias parameters. WliatorTable is executed witliargetspeci-
fied as one of the proxy color table names listed in t&8blethe proxy state values
of the table are recomputed and updated. If the table is too large, no error is gener-
ated, but the proxy format, width and component resolutions are set to zero. If the
color table would be accommodated 6plorTable called withtarget set to the
corresponding regular table nan@JLORTABLE s the regular name correspond-
ing to PROXYCOLORTABLE, for example), the proxy state values are set exactly
as though the regular table were being specified. CalliolprTable with a proxy
targethas no effect on the image or state of any actual color table.

There is no image associated with any of the proxy targets. They cannot be
used as color tables, and they must never be queried @etgolorTable. The
errorINVALID _ENUMs generated if this is attempted.

Convolution Filter Specification
A two-dimensional convolution filter image is specified by calling

void ConvolutionFilter2D (enumtarget enum internalformat
sizei width, sizei height enum format enum type
void *data);

targetmust beCONVOLUTIOND. width, height format, type anddataspecify an
image in memory with the same meaning and allowed values as the corresponding
parameters t®@rawPixels. Theformats COLORNDEX, DEPTHCOMPONEN&Nd
STENCIL_INDEX and thetypeBITMAP are not allowed.

The specified image is extracted from memory and processed just as if
DrawPixels were called, stopping after the final expansion to RGBA. The
R, G, B, and A components of each pixel are then scaled by the four two-
dimensional CONVOLUTIONFILTER _SCALE parameters and biased by the four
two-dimensionalCONVOLUTIONFILTER _BIAS parameters. These parameters are
set by callingConvolutionParameterfv as described below. No clamping takes
place at any time during this process.

Components are then selected from the resulting R, G, B, and A values to
obtain a table with théase internal formaspecified by (or derived frompter-
nalformat in the same manner as for textures (secidhl). internalformatmust

Version 1.4 - July 24, 2002

3.6. PIXEL RECTANGLES 91

be one of the formats in tabk150r table3.16 other than th®EPTHformats in
those tables.

The red, green, blue, alpha, luminance, and/or intensity components of the
pixels are stored in floating point, rather than integer format. They form a two-
dimensional image indexed with coordinaieg such that increases from left to
right, starting at zero, ang increases from bottom to top, also starting at zero.
Image location, j is specified by théVth pixel, counting from zero, where

N =14 jxwidth

The error INVALID _VALUE is generated ifwidth or height is greater
than the maximum supported value. These values are queried Géth
ConvolutionParameteriv, setting target to CONVOLUTIOND and pname to
MAXCONVOLUTIONVIDTHor MAXCONVOLUTIONHEIGHT, respectively.

The scale and bias parameters for a two-dimensional filter are specified by
calling

void ConvolutionParameter{if }v(enumtarget enum pname
T params);

with target CONVOLUTIOND. pnameis one of CONVOLUTIONFILTER _SCALE
or CONVOLUTIONILTER _BIAS. paramspoints to an array of four values: red,
green, blue, and alpha, in that order.

A one-dimensional convolution filter is defined using

void ConvolutionFilterlD (enumtarget enum internalformat
sizei width, enum format enum type void *data);

target must beCONVOLUTIOND. internalformat width, format andtype have
identical semantics and accept the same values as do their two-dimensional coun-
terparts.datamust point to a one-dimensional image, however.

The image is extracted from memory and processed@arntolutionFilter2D
were called with aheightof 1, except that it is scaled and biased by the one-
dimensional CONVOLUTIONFILTER _SCALE and CONVOLUTIONFILTER _BIAS
parameters. These parameters are specified exactly as the two-dimensional
parameters, except thaConvolutionParameterfv is called with target
CONVOLUTIONLD.

The image is formed with coordinatésuch that increases from left to right,
starting at zero. Image locatiarns specified by théth pixel, counting from zero.

The errorINVALID VALUEIs generated itvidth is greater than the maximum
supported value. This value is queried usigtConvolutionParameteriv, setting
targetto CONVOLUTIOND andpnameto MAXCONVOLUTIONVIDTH

Version 1.4 - July 24, 2002

92 CHAPTER 3. RASTERIZATION

Special facilities are provided for the definition of two-dimensiosapa-
rable filters — filters whose image can be represented as the product of two
one-dimensional images, rather than as full two-dimensional images. A two-
dimensional separable convolution filter is specified with

void SeparableFilter2D(enumtarget enum internalformat
sizei width, sizei height enum format enum type
void *row, void *column);

target must beSEPARABLE2D. internalformatspecifies the formats of the table
entries of the two one-dimensional images that will be retaimed: points to a
width pixel wide image of the specifiddrmatandtype columnpoints to aheight
pixel high image, also of the specifiéormatandtype

The two images are extracted from memory and processed @snifolu-
tionFilterlD were called separately for each, except that each image is scaled
and biased by the two-dimensional separal@NVOLUTIONILTER _SCALEand
CONVOLUTIONILTER _BIAS parameters. These parameters are specified exactly
as the one-dimensional and two-dimensional parameters, exce@uimatlution-
Parameteriv is called withtarget SEPARABLE2D.

Alternate Convolution Filter Specification Commands

One and two-dimensional filters may also be specified using image data taken di-
rectly from the framebuffer.
The command

void CopyConvolutionFilter2D(enum target,
enuminternalformatint x, int vy, sizei width,
sizei height);

defines a two-dimensional filter in exactly the manneCohvolutionFilter2D,
except thatimage data are taken from the framebuffer, rather than from client mem-
ory. targetmust beCONVOLUTIONED. X, y, width, andheightcorrespond precisely
to the corresponding arguments@dpyPixels(refer to sectiont.3.3; they specify
the image’swidth andheight and the lower lef(z, y) coordinates of the frame-
buffer region to be copied. The image is taken from the framebuffer exactly as
if these arguments were passedopyPixelswith argumentype set toCOLOR
stopping after the final expansion to RGBA.

Subsequent processing is identical to that describe@dorolutionFilter2D,
beginning with scaling bz ONVOLUTIONFILTER _SCALE Parametergarget in-
ternalformat width, andheightare specified using the same values, with the same

Version 1.4 - July 24, 2002

3.6. PIXEL RECTANGLES 93

meanings, as the equivalent argumentSofvolutionFilter2D . formatis taken to
beRGBA
The command

void CopyConvolutionFilterlD(enumtarget
enuminternalformatint x, int vy, sizei width);

defines a one-dimensional filter in exactly the manne€ohvolutionFilterlD,
except thatimage data are taken from the framebuffer, rather than from client mem-
ory. targetmust beCONVOLUTIONLD. X, y, andwidth correspond precisely to the
corresponding arguments GopyPixels(refer to sectiont.3.3; they specify the
image’swidth and the lower leftx, y) coordinates of the framebuffer region to

be copied. The image is taken from the framebuffer exactly as if these arguments
were passed t€opyPixelswith argumentypeset toCOLORand heightset to 1,
stopping after the final expansion to RGBA.

Subsequent processing is identical to that describe@dorolutionFilter1D,
beginning with scaling bz ONVOLUTIONFILTER _SCALE Parametergarget, in-
ternalformat andwidth are specified using the same values, with the same mean-
ings, as the equivalent arguments@dnvolutionFilter2D . formatis taken to be
RGBA

Convolution Filter State

The required state for convolution filters includes a one-dimensional image array,
two one-dimensional image arrays for the separable filter, and a two-dimensional
image array. Each filter has associated with it a width and height (two-dimensional
and separable only), an integer describing the internal format of the filter, and two
groups of four floating-point numbers to store the filter scale and bias.
Each initial convolution filter is null (zero width and height, internal format

RGBA, with zero-sized components). The initial value of all scale parameters is
(1,1,1,1) and the initial value of all bias parameters is (0,0,0,0).

Color Matrix Specification

Setting the matrix mode t6OLORcauses the matrix operations described in sec-
tion 2.10.2to apply to the top matrix on the color matrix stack. All matrix opera-
tions have the same effect on the color matrix as they do on the other matrices.

Histogram Table Specification

The histogram table is specified with

Version 1.4 - July 24, 2002

94 CHAPTER 3. RASTERIZATION

void Histogram(enumtarget sizei width,
enum internalformat boolean sink);

target must beHISTOGRAMTf a histogram table is to be specifiedarget value
PROXYHISTOGRAMs a special case discussed later in this sectisitlth speci-
fies the number of entries in the histogram table, emernalformatspecifies the
format of each table entry. The maximum allowablielth of the histogram table
is implementation-dependent, but must be at leassBk specifies whether pixel
groups will be consumed by the histogram operatibRUYB or passed on to the
minmax operationfALSE).

If no error results from the execution éfistogram, the specified histogram
table is redefined to hawsidth entries, each with the specified internal format.
The entries are indexed 0 througtidth — 1. Each component in each entry is set
to zero. The values in the previous histogram table, if any, are lost.

The errorINVALID VALUEIs generated ifvidth is not zero or a non-negative
power of 2. The erroTABLE TOQLARGEIs generated if the specified histogram
table is too large for the implementation. The endvALID _ENUMs generated
if internalformatis not one of the formats in tablk15o0r table3.16 oris 1, 2, 3,

4, or any of theDEPTHor INTENSITY formats in those tables.

A GL implementation may vary its allocation of internal component resolution
based on anilistogram parameter, but the allocation must not be a function of any
other factor, and cannot be changed once it is established. In particular, allocations
must be invariant; the same allocation must be made each time a histogram is
specified with the same parameter values. These allocation rules also apply to the
proxy histogram, which is described later in this section.

Histogram State and Proxy State

The state necessary for histogram operation is an array of values, with which is
associated a width, an integer describing the internal format of the histogram, five
integer values describing the resolutions of each of the red, green, blue, alpha,
and luminance components of the table, and a flag indicating whether or not pixel
groups are consumed by the operation. The initial array is null (zero width, internal
formatRGBA with zero-sized components). The initial value of the flag is false.

In addition to the histogram table, a partially instantiated proxy histogram table
is maintained. It includes width, internal format, and red, green, blue, alpha, and
luminance component resolutions. The proxy table does not include image data or
the flag. WherHistogram is executed witltargetset toPROXYHISTOGRAMthe
proxy state values are recomputed and updated. If the histogram array is too large,
no error is generated, but the proxy format, width, and component resolutions are

Version 1.4 - July 24, 2002

3.6. PIXEL RECTANGLES 95

set to zero. If the histogram table would be accomodate#fisyogram called
with target set toHISTOGRAMthe proxy state values are set exactly as though
the actual histogram table were being specified. Caltliggogram with target
PROXYHISTOGRAMas no effect on the actual histogram table.

There is no image associated WRIROXYHISTOGRAMIt cannot be used as
a histogram, and its image must never queried ugetHistogram. The error
INVALID _ENUMesults if this is attempted.

Minmax Table Specification

The minmax table is specified with

void Minmax(enumtarget enum internalformat
boolean sink);

target must beMINMAX internalformatspecifies the format of the table entries.
sink specifies whether pixel groups will be consumed by the minmax operation
(TRUB or passed on to final conversioPALSE).

The errorINVALID _ENUMS generated ifnternalformatis not one of the for-
mats in table3.150r table3.16 oris 1, 2, 3, 4, or any of thBEPTHor INTENSITY
formats in those tables. The resulting table always has 2 entries, each with values
corresponding only to the components of the internal format.

The state necessary for minmax operation is a table containing two elements
(the first element stores the minimum values, the second stores the maximum val-
ues), an integer describing the internal format of the table, and a flag indicating
whether or not pixel groups are consumed by the operation. The initial state is
a minimum table entry set to the maximum representable value and a maximum
table entry set to the minimum representable value. Internal format is B&RA
and the initial value of the flag is false.

3.6.4 Rasterization of Pixel Rectangles

The process of drawing pixels encoded in host memory is diagrammed in fig-
ure 3.7. We describe the stages of this process in the order in which they occur.
Pixels are drawn using

void DrawPixels(sizei width, sizei height enum format,
enumtype void *data);

formatis a symbolic constant indicating what the values in memory represent.
width and heightare the width and height, respectively, of the pixel rectangle to

Version 1.4 - July 24, 2002

96

CHAPTER 3. RASTERIZATION

byte, short, int, o r float pixel
data stream (index or component)

convert
to float

convert
L to RGB

shift
and offset

color table
looku

convolution color table
scale and bias lookup

post color table histogram
convolution lookup

color matrix minmax
scale and bias

clamp final mask to
to [0,1] conversion @"-1)
RGBA pixel |—> color index pixel |—>
data out data out

Figure 3.7. Operation dbrawPixels. Output is RGBA pixels if the GL is in RGBA
mode, color index pixels otherwise. Operations in dashed boxes may be en

or disabled. RGBA and seipsigaxspixgLipaths, Zeghown; depth and stencil |

abled
nixel

paths are not shown.

3.6. PIXEL RECTANGLES 97

typeParameter Corresponding Special
Token Name GL Data Type| Interpretation
UNSIGNEDBYTE ubyte No
BITMAP ubyte Yes
BYTE byte No
UNSIGNEDSHORT ushort No
SHORT short No
UNSIGNEDINT uint No
INT int No
FLOAT float No
UNSIGNEDBYTE3.3.2 ubyte Yes
UNSIGNEDBYTE2_3_3_REV ubyte Yes
UNSIGNEDSHORT5.6.5 ushort Yes
UNSIGNEDSHORT5_.6 5_REV ushort Yes
UNSIGNEDSHORT4 4.4 4 ushort Yes
UNSIGNEDSHORT4_ 4_4_4_REV ushort Yes
UNSIGNEDSHORT5 5. 5.1 ushort Yes
UNSIGNEDSHORT1 .5 5 5_REV ushort Yes
UNSIGNEDINT _8.8.8.8 uint Yes
UNSIGNEDINT _8_8_8_8_REV uint Yes
UNSIGNEDINT _.10.10_.10_2 uint Yes
UNSIGNEDINT 2_.10_.10_10_REV uint Yes

Table 3.5:DrawPixels andReadPixelstypeparameter values and the correspond-
ing GL data types. Refer to table2 for definitions of GL data types. Special
interpretations are described near the end of seétiért

be drawn.datais a pointer to the data to be drawn. These data are represented
with one of seven GL data types, specifiedthge The correspondence between
the twentytypetoken values and the GL data types they indicate is given in ta-
ble 3.5. If the GL is in color index mode anfbrmatis not one ofCOLORNDEX,
STENCIL_INDEX, or DEPTHCOMPONENThen the erroNVALID _OPERATIONoC-

curs. Iftypeis BITMAP andformatis not COLORNDEX or STENCIL_INDEX then

the errorINVALID _ENUMbccurs. Some additional constraints on the combinations
of formatandtypevalues that are accepted is discussed below.

Version 1.4 - July 24, 2002

98 CHAPTER 3. RASTERIZATION

Format Name | Element Meaning and OrdérTarget Buffer |
COLORNDEX Color Index Color
STENCIL_INDEX Stencil Index Stencil
DEPTHCOMPONEN(Depth Depth
RED R Color
GREEN G Color
BLUE B Color
ALPHA A Color
RGB R,G,B Color
RGBA R,G,B,A Color
BGR B,G,R Color
BGRA B,G R,A Color
LUMINANCE Luminance Color
LUMINANCEALPHA Luminance, A Color

Table 3.6:DrawPixels andReadPixelsformats. The second column gives a de-
scription of and the number and order of elements in a group. Unless specified as
an index, formats yield components.

Unpacking

Data are taken from host memory as a sequence of signed or unsigned bytes (GL
data typedyte andubyte), signed or unsigned short integers (GL data types
short andushort), signed or unsigned integers (GL data typgs anduint),

or floating point values (GL data tygkat). These elements are grouped into
sets of one, two, three, or four values, depending orfdhmat to form a group.
Table3.6summarizes the format of groups obtained from memory; it also indicates
those formats that yield indices and those that yield components.

By default the values of each GL data type are interpreted as they would be
specified in the language of the client's GL binding.UNPACKSWAPBYTESIs
enabled, however, then the values are interpreted with the bit orderings modified
as per table3.7. The modified bit orderings are defined only if the GL data type
ubyte has eight bits, and then for each specific GL data type only if that type is
represented with 8, 16, or 32 bits.

The groups in memory are treated as being arranged in a rectangle. This
rectangle consists of a series wfvs, with the first element of the first group
of the first row pointed to by the pointer passeddimwPixels. If the value of
UNPACKROWL.ENGTHS not positive, then the number of groups in a rowidth;

Version 1.4 - July 24, 2002

3.6. PIXEL RECTANGLES 99

Element Size| Default Bit Ordering| Modified Bit Ordering

8 bit [7..0] [7..0]

16 bit [15..0] [7..0][15..8]

32 bit [31..0] [7..0][15..8][23..16][31..24]

Table 3.7: Bit ordering modification of elements wheNPACKSWAPBYTESIs
enabled. These reorderings are defined only when GL dataityyie has 8 bits,
and then only for GL data types with 8, 16, or 32 bits. Bit O is the least significant.

otherwise the number of groupsUsNPACKROWLENGTH If p indicates the loca-
tion in memory of the first element of the first row, then the first element oMtie
row is indicated by

p+ Nk (3.10)
whereN is the row number (counting from zero) and k is defined as
nl s> a,
b= { a/s[snl/a] s<a (3.11)

wheren is the number of elements in a groupis the number of groups in
the row, a is the value 0fUNPACKALIGNMENT ands is the size, in units of GL
ubyte s, of an element. If the number of bits per element isin@t 4, or 8 times
the number of bits in a Gubyte , thenk = nl for all values ofa.

There is a mechanism for selecting a sub-rectangle of groups from a
larger containing rectangle. This mechanism relies on three integer parameters:
UNPACKROW ENGTH UNPACKSKIP _ROWSand UNPACKSKIP _PIXELS. Before
obtaining the first group from memory, the pointer supplieDtawPixelsis effec-
tively advanced byUNPACKSKIP _PIXELS)n+(UNPACKSKIP _ROW$: elements.
Thenwidth groups are obtained from contiguous elements in memory (without ad-
vancing the pointer), after which the pointer is advancedé biementsheightsets
of width groups of values are obtained this way. See figuge

Calling DrawPixels with a type of UNSIGNEDBYTES3.3.2,

UNSIGNEDBYTE2_3_3_REV, UNSIGNEDSHORT5.6.5,
UNSIGNEDSHORT5 .6 _5_REV, UNSIGNEDSHORT4 4 4 4,
UNSIGNEDSHORT4 4 4 4 _REV, UNSIGNEDSHORT5.5.5.1,
UNSIGNEDSHORT1 5.5.5_REV, UNSIGNEDINT _-8.8.8.8,
UNSIGNEDINT _8_8_8_8_REV, UNSIGNEDINT -10.10_10_2, or

UNSIGNEDINT 2_.10_10_10_REV is a special case in which all the compo-
nents of each group are packed into a single unsigned byte, unsigned short, or

Version 1.4 - July 24, 2002

100 CHAPTER 3. RASTERIZATION

ROW LENGTH

SKI P_PI XELS

SKI P_ROWS

Figure 3.8. Selecting a subimage from an image. The indicated parameter names
are prefixed byyNPACKfor DrawPixels and byPACK for ReadPixels

unsigned int, depending on the type. The number of components per packed pixel
is fixed by the type, and must match the number of components per group indicated
by theformatparameter, as listed in tabBe8 The erroiNVALID _OPERATIONS
generated if a mismatch occurs. This constraint also holds for all other functions
that accept or return pixel data usitygpeandformatparameters to define the type
and format of that data.

Bitfield locations of the first, second, third, and fourth components of each
packed pixel type are illustrated in table®, 3.10 and3.11 Each bitfield is
interpreted as an unsigned integer value. If the base GL type is supported with
more than the minimum precision (e.g. a 9-bit byte) the packed components are
right-justified in the pixel.

Components are normally packed with the first component in the most signif-
icant bits of the bitfield, and successive component occupying progressively less
significant locations. Types whose token names end WilVreverse the compo-
nent packing order from least to most significant locations. In all cases, the most
significant bit of each component is packed in the most significant bit location of
its location in the bitfield.

Version 1.4 - July 24, 2002

3.6. PIXEL RECTANGLES 101

typeParameter GL Data | Number of Matching
Token Name Type Componentg Pixel Formats
UNSIGNEDBYTE3_3.2 ubyte 3 RGB
UNSIGNEDBYTE2_3_3_REV ubyte 3 RGB
UNSIGNEDSHORT5.6.5 ushort 3 RGB
UNSIGNEDSHORT5_6_5_REV ushort 3 RGB
UNSIGNEDSHORT4 4. 4 4 ushort 4 RGBABGRA
UNSIGNEDSHORT4 4. 4 4_REV ushort 4 RGBABGRA
UNSIGNEDSHORT5 551 ushort 4 RGBABGRA
UNSIGNEDSHORT1 5 5 5_REV ushort 4 RGBABGRA
UNSIGNEDINT _8.8_8_8 uint 4 RGBABGRA
UNSIGNEDINT _8_.8_.8_8_REV uint 4 RGBABGRA
UNSIGNEDINT _.10.10_.10_2 uint 4 RGBABGRA
UNSIGNEDINT -2_10_.10_10_REV uint 4 RGBABGRA

Table 3.8: Packed pixel formats.

UNSIGNEDBYTE3.3_2:

7 6 5 4 3 2 1 0

1st Component 2nd 3rd

UNSIGNEDBYTE2_3_3_REV.

7 6 5 4 3 2 1 0

‘ 3rd ‘ 2nd ‘ 1st Component ‘

Table 3.9:UNSIGNEDBYTEformats. Bit numbers are indicated for each compo-
nent.

Version 1.4 - July 24, 2002

102 CHAPTER 3. RASTERIZATION

UNSIGNEDSHORT5_6_5:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd

UNSIGNEDSHORT5.6_5_REV.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3rd 2nd 1st Component

UNSIGNEDSHORT4 4 4 4:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNEDSHORT4 4_4_4 REV.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

UNSIGNEDSHORT5.5.5_1:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd ‘ 4th ‘

UNSIGNEDSHORT1.5.5.5 REV.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

’ 4th ’ 3rd ‘ 2nd ‘ 1st Component

Table 3.10:UNSIGNEDSHORTformats

Version 1.4 - July 24, 2002

3.6. PIXEL RECTANGLES 103

UNSIGNEDINT _8_8_8_8:

31 30 29 28 27 26 25 24 23 2221 20 19 18 17 16 1514 131211109 8 7 6 5 4 3 2 1 O

1st Component 2nd 3rd 4th

UNSIGNEDINT _-8_8_8_8_REV.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 131211109 8 7 6 5 4 3 2 1 O

4th 3rd 2nd 1st Component

UNSIGNEDINT -10.10_10_2:

31 30 29 28 27 26 25 24 23 2221 2019 18 17 16 1514131211109 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd ‘ 4th ‘

UNSIGNEDINT -2_.10_10_10_REV.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 131211109 8 7 6 5 4 3 2 1 O

‘ 4th ‘ 3rd ‘ 2nd ‘ 1st Component

Table 3.11:UNSIGNEDINT formats

Version 1.4 - July 24, 2002

104 CHAPTER 3. RASTERIZATION
Format First Second Third Fourth
Component| Component] Component, Component
RGB red green blue
RGBA red green blue alpha
BGRA blue green red alpha

Table 3.12: Packed pixel field assignments.

The assignment of component to fields in the packed pixel is as described in
table3.12

Byte swapping, if enabled, is performed before the component are extracted
from each pixel. The above discussions of row length and image extraction are
valid for packed pixels, if “group” is substituted for “component” and the number
of components per group is understood to be one.

Calling DrawPixels with atypeof BITMAP is a special case in which the data
are a series of Glubyte values. Eachubyte value specifies 8 1-bit elements
with its 8 least-significant bits. The 8 single-bit elements are ordered from most
significant to least significant if the value ONPACKLSB_FIRST is FALSE, other-
wise, the ordering is from least significant to most significant. The values of bits
other than the 8 least significant in eadbyte are not significant.

The first element of the first row is the first bit (as defined above) ofitiyte
pointed to by the pointer passedBwawPixels. The first element of the second
row is the first bit (again as defined above) of thiy/te at locationp + k, where
k is computed as

k=a {L—‘
8a

There is a mechanism for selecting a sub-rectangle of elements feonviaP
image as well. Before obtaining the first element from memory, the pointer sup-
plied to DrawPixels is effectively advanced byNPACKSKIP _ROWS k ubyte s.
ThenUNPACKSKIP _PIXELS 1-bit elements are ignored, and the subsequiatih
1-bit elements are obtained, without advancinguhgte pointer, after which the
pointer is advanced by ubyte s. heightsets ofwidth elements are obtained this
way.

(3.12)

Conversion to floating-point

This step applies only to groups of components. It is not performed on indices.
Each element in a group is converted to a floating-point value according to the ap-

Version 1.4 - July 24, 2002

3.6. PIXEL RECTANGLES 105

propriate formula in tabl@.6 (section2.13). For packed pixel types, each element
in the group is converted by computing (2 — 1), wherec is the unsigned inte-
ger value of the bitfield containing the element &ids the number of bits in the
bitfield.

Conversion to RGB

This step is applied only if thiermatis LUMINANCEor LUMINANCEALPHA If the
formatis LUMINANCE then each group of one element is converted to a group of
R, G, and B (three) elements by copying the original single element into each of
the three new elements. If tHermatis LUMINANCEALPHA then each group of

two elements is converted to a group of R, G, B, and A (four) elements by copying
the first original element into each of the first three new elements and copying the
second original element to the A (fourth) new element.

Final Expansion to RGBA

This step is performed only for non-depth component groups. Each group is con-
verted to a group of 4 elements as follows: if a group does not contain an A element,
then A is added and set to 1.0. If any of R, G, or B is missing from the group, each
missing element is added and assigned a value of 0.0.

Pixel Transfer Operations

This step is actually a sequence of steps. Because the pixel transfer operations
are performed equivalently during the drawing, copying, and reading of pixels,
and during the specification of texture images (either from memory or from the
framebuffer), they are described separately in se@iért After the processing
described in that section is completed, groups are processed as described in the
following sections.

Final Conversion

For a color index, final conversion consists of masking the bits of the index to the
left of the binary point by2” — 1, wheren is the number of bits in an index buffer.
For RGBA components, each element is clamp€d td]. The resulting values are
converted to fixed-point according to the rules given in sec®id®.9(Final Color
Processing).

For a depth component, an element is first clampdd,tg and then converted
to fixed-point as if it were a window value (see sectiof.10.], Controlling the
Viewport).

Version 1.4 - July 24, 2002

106 CHAPTER 3. RASTERIZATION

Stencil indices are masked 12} — 1, wheren is the number of bits in the
stencil buffer.

Conversion to Fragments

The conversion of a group to fragments is controlled with
void PixelZoom(float =z, float z,);

Let (z,p, yrp) be the current raster position (sectidri?). (If the current raster
position is invalid, therDrawPixels is ignored; pixel transfer operations do not
update the histogram or minmax tables, and no fragments are generated. However,
the histogram and minmax tables are updated even if the corresponding fragments
are later rejected by the pixel ownership (sectioh.]) or scissor (sectiod.1.2

tests.) If a particular group (index or components) isrttiein a row and belongs to

the mth row, consider the region in window coordinates bounded by the rectangle
with corners

(Xrp + 22N, Yrp + 2ym) and (xpp + 2ze(n+1),yrp + 2y(m + 1))

(eitherz, or z, may be negative). Any fragments whose centers lie inside of this
rectangle (or on its bottom or left boundaries) are produced in correspondence with
this particular group of elements.

A fragment arising from a group consisting of color data takes on the color
index or color components of the group and the current raster position’s asso-
ciated depth value, while a fragment arising from a depth component takes that
component’s depth value and the current raster position’s associated color index
or color components. In both cases, the fog coordinate is taken from the current
raster position’s associated raster distance, and texture coordinates are taken from
the current raster position’s associated texture coordinates. Texture coordinates
t, andr are replaced with/q, t/q, andr/q, respectively. lfg is less than or equal
to zero, the results are undefined. Groups arising foyawPixels with a format
of STENCIL_INDEX are treated specially and are described in seetiBri.

3.6.5 Pixel Transfer Operations
The GL defines four kinds of pixel groups:

1. RGBA componen&ach group comprises four color components: red, green,
blue, and alpha.

2. Depth componentEach group comprises a single depth component.

Version 1.4 - July 24, 2002

3.6. PIXEL RECTANGLES 107

3. Color index:Each group comprises a single color index.
4. Stencil index:Each group comprises a single stencil index.

Each operation described in this section is applied sequentially to each pixel group
in an image. Many operations are applied only to pixel groups of certain kinds; if
an operation is not applicable to a given group, it is skipped.

Arithmetic on Components

This step applies only to RGBA component and depth component groups. Each
component is multiplied by an appropriate signed scale faBBRSCALEfor an

R componentGREENSCALEfor a G componenBLUE SCALEfor a B component,
andALPHASCALEfor an A component, obEPTHSCALEfor a depth component.
Then the result is added to the appropriate signed IR&RBIAS, GREENBIAS,
BLUEBIAS, ALPHABIAS, or DEPTHBIAS.

Arithmetic on Indices

This step applies only to color index and stencil index groups. If the index is a
floating-point value, it is converted to fixed-point, with an unspecified number of
bits to the right of the binary point and at led$bg,(MAXPIXEL _MAPTABLE)]
bits to the left of the binary point. Indices that are already integers remain so; any
fraction bits in the resulting fixed-point value are zero.

The fixed-point index is then shifted bYINDEX_SHIFT| bits, left if
INDEX_SHIFT > 0 and right otherwise. In either case the shift is zero-filled. Then,
the signed integer offsétfiIDEX_OFFSETis added to the index.

RGBA to RGBA Lookup

This step applies only to RGBA component groups, and is skippedfCOLORs

FALSE First, each componentis clamped to the raiigé]. There is a table associ-

ated with each of the R, G, B, and A component elemeritsEL _MAPR_TO.R for

R, PIXEL _MARPG.TOG for G, PIXEL _MAPB_TO.B for B, andPIXEL _MAPA TOA

for A. Each element is multiplied by an integer one less than the size of the corre-
sponding table, and, for each element, an address is found by rounding this value
to the nearest integer. For each element, the addressed value in the corresponding
table replaces the element.

Version 1.4 - July 24, 2002

108 CHAPTER 3. RASTERIZATION

Color Index Lookup

This step applies only to color index groups. If the GL command that invokes the
pixel transfer operation requires that RGBA component pixel groups be generated,
then a conversion is performed at this step. RGBA component pixel groups are
required if

1. The groups will be rasterized, and the GL is in RGBA mode, or
2. The groups will be loaded as an image into texture memory, or

3. The groups will be returned to client memory with a format other than
COLORNDEX.

If RGBA component groups are required, then the integer part of the in-
dex is used to reference 4 tables of color componemBEL _MAPI _TOR,
PIXEL _MAPI _-TOG, PIXEL _MAPI _-TOB, andPIXEL _MAPI _TOA. Each of these
tables must have™ entries for some integer value af(n may be different for
each table). For each table, the index is first rounded to the nearest integer; the
result is ANDed with2™ — 1, and the resulting value used as an address into the
table. The indexed value becomes an R, G, B, or A value, as appropriate. The
group of four elements so obtained replaces the index, changing the group’s type
to RGBA component.

If RGBA component groups are not required, andMAPCOLORs enabled,
then the index is looked up in tHAXEL _MAPI _TO.l table (otherwise, the index
is not looked up). Again, the table must ha¥eentries for some integer. The
index is first rounded to the nearest integer; the result is ANDed 2ith 1, and
the resulting value used as an address into the table. The value in the table replaces
the index. The floating-point table value is first rounded to a fixed-point value with
unspecified precision. The group’s type remains color index.

Stencil Index Lookup

This step applies only to stencil index groups.MAPSTENCIL is enabled, then

the index is looked up in theIXEL _"MARS_TO S table (otherwise, the index is not
looked up). The table must ha2é entries for some integer. The integer index

is ANDed with2™ — 1, and the resulting value used as an address into the table.
The integer value in the table replaces the index.

Color Table Lookup

This step applies only to RGBA component groups. Color table lookup is only
done if COLORTABLE is enabled. If a zero-width table is enabled, no lookup is

Version 1.4 - July 24, 2002

3.6. PIXEL RECTANGLES 109

Base Internal FormaJt R \ G \ B \ A \

ALPHA A,
LUMINANCE L | L; | L,
LUMINANCEALPHA | L; | L; | L; | A;
INTENSITY L | L | L L
RGB Rt Gt Bt
RGBA Rt Gt Bt At

Table 3.13: Color table lookupR;, G+, By, A, Ly, andI; are color table values

that are assigned to pixel componeiits G, B, and A depending on the table
format. When there is no assignment, the component value is left unchanged by
lookup.

performed.

The internal format of the table determines which components of the group
will be replaced (see table.13. The components to be replaced are converted
to indices by clamping td, 1], multiplying by an integer one less than the width
of the table, and rounding to the nearest integer. Components are replaced by the
table entry at the index.

The required state is one bit indicating whether color table lookup is enabled
or disabled. In the initial state, lookup is disabled.

Convolution

This step applies only to RGBA component groups. CIONVOLUTIOND

is enabled, the one-dimensional convolution filter is applied only to the one-
dimensional texture images passedTeximagelD TexSublmagelD Copy-
TexlmagelD and CopyTexSublmagelD and returned byGetTexIimage (see
section 6.1.4 with target TEXTURELD. If CONVOLUTIOND is enabled, the
two-dimensional convolution filter is applied only to the two-dimensional im-
ages passed torawPixels, CopyPixels ReadPixels Teximage2D TexSublm-
age2D CopyTexlmage2) CopyTexSublmage2D and CopyTexSublmage3D

If SEPARABLE2D is enabled, andCONVOLUTIOND is disabled, the separable
two-dimensional convolution filter is instead applied these images.

The convolution operation is a sum of products of source image pixels and
convolution filter pixels. Source image pixels always have four components: red,
green, blue, and alpha, denoted in the equations beloi®,as7s, Bs, and A;.

Filter pixels may be stored in one of five formats, with 1, 2, 3, or 4 components.
These components are denotedias Gy, By, Ay, Ly, andI; in the equations

Version 1.4 - July 24, 2002

110

CHAPTER 3. RASTERIZATION

Base Filter Format | R | G | B | A \
ALPHA R, G B, A, x Af
LUMINANCE Ryx Ly | Gox Ly | Box Ly | A,
LUMINANCEALPHA| R % L | G Ly | Bsx Ly | Agx Ay
INTENSITY RS*If GS*IJC BS*If AS*If
RGB Rsx Ry | Gsx Gy | Bo* By | Ay
RGBA R,xR; | G+ Gy | BxBy | A% A,

Table 3.14: Computation of filtered color components depending on filter image
format. C x F indicates the convolution of image componéntvith filter F'.

below. The result of the convolution operation is the 4-tuple R,G,B,A. Depending
on the internal format of the filter, individual color components of each source
image pixel are convolved with one filter component, or are passed unmodified.
The rules for this are defined in tatfel 4

The convolution operation is defined differently for each of the three convolu-
tion filters. The variable$V’; and H refer to the dimensions of the convolution
filter. The variabledV,; and H, refer to the dimensions of the source pixel image.

The convolution equations are defined as follows, widérefers to the filtered
result,C; refers to the one- or two-dimensional convolution filter, &nd,, and
Cotumn refer to the two one-dimensional filters comprising the two-dimensional
separable filterC”, depends on the source image calarand the convolution bor-
der mode as described belo@,., the filtered output image, depends on all of these
variables and is described separately for each border mode. The pixel indexing
nomenclature is decribed in th@onvolution Filter Specification subsection of
section3.6.3

One-dimensional filter:

Wy—1
Cli'| = Y Cii" +n]* Cyn]
n=0
Two-dimensional filter:
Wi—1Hp—1

Cli,j1="> 3 Cli'+n,j +m]*Csln,m]

n=0 m=0

Two-dimensional separable filter:

Wy—1Hy—1
Cli',j'] = Z Z CLi +n, 5"+ m] * Crow[n] * Cropumn|m]

n=0 m=0

Version 1.4 - July 24, 2002

3.6. PIXEL RECTANGLES 111

If W; of a one-dimensional filter is zero, th€fji] is always set to zero. Like-
wise, if eitheriW; or H; of a two-dimensional filter is zero, theTi[i, j] is always
set to zero.

The convolution border mode for a specific convolution filter is specified by
calling

void ConvolutionParameter{if }(enumtarget enum pname
T param);

wheretargetis the name of the filtepnames CONVOLUTIONBORDERVMODEand
paramis one 0fREDUCECONSTANBORDERY REPLICATE BORDER

Border Mode REDUCE

The width and height of source images convolved with border nRigleUCEre
reduced byW; — 1 and H; — 1, respectively. If this reduction would generate
a resulting image with zero or negative width and/or height, the output is simply
null, with no error generated. The coordinates of the image that results from a con-
volution with border mod&®EDUCEre zero throught’; — W in width, and zero
throughH, — H in height. In cases where errors can result from the specification
of invalid image dimensions, it is these resulting dimensions that are tested, not
the dimensions of the source image. (A specific examplext¢magelDandTex-
Image2D, which specify constraints for image dimensions. EvefexlmagelD
or Texlmage2Dis called with a null pixel pointer, the dimensions of the result-
ing texture image are those that would result from the convolution of the specified
image).

When the border mode REDUCEC", equals the source image col6t and
C, equals the filtered resut.

For the remaining border modes, defifig = |W,/2| andC}, = |Hy/2].
The coordinate$C,,, C},) define the center of the convolution filter.

Border Mode CONSTANBORDER

If the convolution border mode IBONSTANBORDERthe output image has the
same dimensions as the source image. The result of the convolution is the same
as if the source image were surrounded by pixels with the same color as the
current convolution border color. Whenever the convolution filter extends be-
yond one of the edges of the source image, the constant-color border pixels are
used as input to the filter. The current convolution border color is set by call-
ing ConvolutionParameterfv or ConvolutionParameteriv with pnameset to
CONVOLUTIONMBORDERCOLORand paramscontaining four values that comprise

Version 1.4 - July 24, 2002

112 CHAPTER 3. RASTERIZATION

the RGBA color to be used as the image border. Integer color components are
interpreted linearly such that the most positive integer maps to 1.0, and the most
negative integer maps to -1.0. Floating point color components are not clamped
when they are specified.

For a one-dimensional filter, the result color is defined by

Cr[z] = C[Z - Cw]

whereC[i'] is computed using the following equation fo6f [¢']:

y y
O] :{ Csli'], 0<i < W

Ce, otherwise

andC. is the convolution border color.
For a two-dimensional or two-dimensional separable filter, the result color is
defined by

CT[Z7]] = C[Z - C’ll)?j - Ch]

whereC[i’, j'] is computed using the following equation f6¢[:’, j']:

Cqli', 5], 0<4' <W,,0<j < H;
Ce, otherwise

Cit) {

Border Mode REPLICATE BORDER

The convolution border modREPLICATE BORDERalso produces an output im-

age with the same dimensions as the source image. The behavior of this mode is

identical to that of theCONSTANBORDERNOde except for the treatment of pixel

locations where the convolution filter extends beyond the edge of the source im-

age. For these locations, it is as if the outermost one-pixel border of the source

image was replicated. Conceptually, each pixel in the leftmost one-pixel column

of the source image is replicatéd, times to provide additional image data along

the left edge, each pixel in the rightmost one-pixel column is replicigdimes

to provide additional image data along the right edge, and each pixel value in the

top and bottom one-pixel rows is replicated to cregderows of image data along

the top and bottom edges. The pixel value at each corner is also replicated in order

to provide data for the convolution operation at each corner of the source image.
For a one-dimensional filter, the result color is defined by

Version 1.4 - July 24, 2002

3.6. PIXEL RECTANGLES 113

whereCi'] is computed using the following equation 6t [i']:

CLli"] = Cg[clamp(i’, Wy)]

and the clamping functioclamp(val, max) is defined as

0, val < 0
clamp(val, max) = { wal, 0 < wal < max
mar — 1, wval > mazx

For a two-dimensional or two-dimensional separable filter, the result color is
defined by

OT’[Z7.]] = C[Z - Cwaj - Oh]

whereC|i', j'] is computed using the following equation f6¢t[i’, j']:

Cili',j'] = Cs[clamp(i’', W), clamp(j’, Hy)]

After convolution, each component of the resulting image is scaled by the
corresponding PixelTransfer parameters: POSTCONVOLUTIONREDSCALE
for an R component, POSTCONVOLUTIONGREENSCALE for a G com-
ponent, POSTCONVOLUTIOMBLUESCALE for a B component, and
POSTCONVOLUTIOMLPHASCALE for an A component. The result
is added to the corresponding bias: POSTCONVOLUTIONREDBIAS,
POSTCONVOLUTIONGREENBIAS, POSTCONVOLUTIONBLUEBIAS, or
POSTCONVOLUTIOMLPHABIAS.

The required state is three bits indicating whether each of one-dimensional,
two-dimensional, or separable two-dimensional convolution is enabled or disabled,
an integer describing the current convolution border mode, and four floating-point
values specifying the convolution border color. In the initial state, all convolu-
tion operations are disabled, the border modeRE®UCEand the border color is
(0,0,0,0).

Post Convolution Color Table Lookup

This step applies only to RGBA component groups. Post convolution color
table lookup is enabled or disabled by callifgnable or Disable with

the symbolic constanPOSTCONVOLUTIONCOLORTABLE. The post convo-
lution table is defined by callingColorTable with a target argument of
POSTCONVOLUTIONCOLORTABLE. In all other respects, operation is identical
to color table lookup, as defined earlier in sectif.5

Version 1.4 - July 24, 2002

114 CHAPTER 3. RASTERIZATION

The required state is one bit indicating whether post convolution table lookup
is enabled or disabled. In the initial state, lookup is disabled.

Color Matrix Transformation

This step applies only to RGBA component groups. The components are
transformed by the color matrix. Each transformed component is multiplied
by an appropriate signed scale factorPOSTCOLORMATRIXREDSCALE
for an R component, POSTCOLORMATRIXGREENSCALE for a G
component, POSTCOLORMATRIXBLUESCALE for a B component,
and POSTCOLORMVATRIXALPHASCALE for an A component. The
result is added to a signed bias: POSTCOLORMATRIXREDBIAS,
POSTCOLORMATRIX GREENBIAS, POSTCOLORMATRIXBLUEBIAS, or
POSTCOLORVATRIXALPHABIAS. The resulting components replace each
component of the original group.

That is, if M. is the color matrix, a subscript afrepresents the scale term for
a component, and a subscriptiafepresents the bias term, then the components

R

G

B

A

are transformed to

R Rs, O 0 0 R Ry
G’ 0 G 0 0 G Gy
Bl=lo o B o|M|Bs|T|B5B
A’ 0 0 0 A, A Ay

Post Color Matrix Color Table Lookup

This step applies only to RGBA component groups. Post color matrix
color table lookup is enabled or disabled by calliffnable or Disable
with the symbolic constarROSTCOLORMATRIX COLORTABLE The post color
matrix table is defined by callingColorTable with a target argument of
POSTCOLORMATRIX. COLORTABLE In all other respects, operation is identical
to color table lookup, as defined in secti®i®.5

The required state is one bit indicating whether post color matrix lookup is
enabled or disabled. In the initial state, lookup is disabled.

Version 1.4 - July 24, 2002

3.6. PIXEL RECTANGLES 115

Histogram

This step applies only to RGBA component groups. Histogram operation is
enabled or disabled by callingnable or Disable with the symbolic constant
HISTOGRAM

If the width of the table is non-zero, then indic&s, G;, B;, and A; are de-
rived from the red, green, blue, and alpha components of each pixel group (without
modifying these components) by clamping each componejt 10 , multiplying
by one less than the width of the histogram table, and rounding to the nearest in-
teger. If the format of thélISTOGRAMable includes red or luminance, the red or
luminance component of histogram enfy is incremented by one. If the format
of the HISTOGRAMable includes green, the green component of histogram entry
G, is incremented by one. The blue and alpha components of histogram entries
B; and A; are incremented in the same way. If a histogram entry component is
incremented beyond its maximum value, its value becomes undefined; this is not
an error.

If the Histogram sink parameter i$ALSE, histogram operation has no effect
on the stream of pixel groups being processed. Otherwise, all RGBA pixel groups
are discarded immediately after the histogram operation is completed. Because
histogram precedes minmax, no minmax operation is performed. No pixel frag-
ments are generated, no change is made to texture memory contents, and no pixel
values are returned. However, texture object state is modified whether or not pixel
groups are discarded.

Minmax

This step applies only to RGBA component groups. Minmax operation is enabled
or disabled by callingznable or Disablewith the symbolic constarMINMAX

If the format of the minmax table includes red or luminance, the red compo-
nent value replaces the red or luminance value in the minimum table element if
and only if it is less than that component. Likewise, if the format includes red or
luminance and the red component of the group is greater than the red or luminance
value in the maximum element, the red group component replaces the red or lumi-
nance maximum component. If the format of the table includes green, the green
group component conditionally replaces the green minimum and/or maximum if
it is smaller or larger, respectively. The blue and alpha group components are
similarly tested and replaced, if the table format includes blue and/or alpha. The
internal type of the minimum and maximum component values is floating point,
with at least the same representable range as a floating point number used to rep-
resent colors (sectiok.1.7). There are no semantics defined for the treatment of

Version 1.4 - July 24, 2002

116 CHAPTER 3. RASTERIZATION

group component values that are outside the representable range.

If the Minmax sink parameter i$~ALSE, minmax operation has no effect on
the stream of pixel groups being processed. Otherwise, all RGBA pixel groups are
discarded immediately after the minmax operation is completed. No pixel frag-
ments are generated, no change is made to texture memory contents, and no pixel
values are returned. However, texture object state is modified whether or not pixel
groups are discarded.

3.6.6 Pixel Rectangle Multisample Rasterization

If MULTISAMPLHS enabled, and the value BAMPLEBUFFERSS one, then pixel
rectangles are rasterized using the following algorithm.(l&t,, Y,,) be the cur-
rent raster position. (If the current raster position is invalid, tbeawPixels is
ignored.) If a particular group (index or components) is e in a row and be-
longs to themth row, consider the region in window coordinates bounded by the
rectangle with corners

(Xop + Zz %1, Yy + Zy s m)

and
(Xop + Zz* (n+1),Yrp + Zy x (m + 1))

whereZ, andZ, are the pixel zoom factors specified BixelZoom, and may each
be either positive or negative. A fragment representing gfeum) is produced
for each framebuffer pixel with one or more sample points that lie inside, or on
the bottom or left boundary, of this rectangle. Each fragment so produced takes its
associated data from the group and from the current raster position, in a manner
consistent with the discussion in tl®nversion to Fragmentssubsection of sec-
tion 3.6.4 All depth and color sample values are assigned the same value, taken
either from their group (for depth and color component groups) or from the cur-
rent raster position (if they are not). All sample values are assigned the same fog
coordinate and the same set of texture coordinates, taken from the current raster
position.

A single pixel rectangle will generate multiple, perhaps very many fragments
for the same framebuffer pixel, depending on the pixel zoom factors.

3.7 Bitmaps
Bitmaps are rectangles of zeros and ones specifying a particular pattern of frag-

ments to be produced. Each of these fragments has the same associated data. These
data are those associated with tugrent raster position

Version 1.4 - July 24, 2002

3.7. BITMAPS 117

7%%7

%%%%%%

Y
/ % % /7 V.
/7/77

|

Figure 3.9. A bitmap and its associated parametgysandy,; are not shown.

Bitmaps are sent using

void Bitmap(sizei w,sizei h,float ap,, float .,
float xp;, float y;, ubyte *data);

w andh comprise the integer width and height of the rectangular bitmap, respec-
tively. (xpo, ybo) Qives the floating-point: andy values of the bitmap’s origin.
(zvi, y;) gives the floating-point andy increments that are added to the raster
position after the bitmap is rasterizaethtais a pointer to a bitmap.

Like a polygon pattern, a bitmap is unpacked from memory according to the
procedure given in sectioB.6.4for DrawPixels; it is as if thewidth and height
passed to that command were equaltandh, respectively, théypewereBITMAP,
and theformatwere COLORNDEX. The unpacked values (before any conversion
or arithmetic would have been performed) form a stipple pattern of zeros and ones.
See figures.9.

A bitmap sent usin@itmap is rasterized as follows. First, if the current raster
position is invalid (the valid bit is reset), the bitmap is ignored. Otherwise, a rect-
angular array of fragments is constructed, with lower left corner at

(@i, yu) = ([Zrp — Tools [Yrp — Ybo))

Version 1.4 - July 24, 2002

118 CHAPTER 3. RASTERIZATION

and upper right corner &t;; + w, y;; + h) wherew andh are the width and height

of the bitmap, respectively. Fragments in the array are produced if the correspond-
ing bit in the bitmap id and not produced otherwise. The associated data for each
fragment are those associated with the current raster position, with texture coordi-
natess, t, andr replaced withs/q, t/q, andr/q, respectively. Ifq is less than or

equal to zero, the results are undefined. Once the fragments have been produced,
the current raster position is updated:

(pra yrp) — (xrp + Ty, Yrp + ybi)-

Thez andw values of the current raster position remain unchanged.

Bitmap Multisample Rasterization

If MULTISAMPLEIs enabled, and the value SAMPLEBUFFERSis one, then
bitmaps are rasterized using the following algorithm. If the current raster position
is invalid, the bitmap is ignored. Otherwise, a screen-aligned array of pixel-size
rectangles is constructed, with its lower left corner(&t.,, Y,,), and its upper

right corner at(X,, + w,Y;, + h), wherew andh are the width and height of

the bitmap. Rectangles in this array are eliminated if the corresponding bit in the
bitmap is 0, and are retained otherwise. Bitmap rasterization produces a fragment
for each framebuffer pixel with one or more sample points either inside or on the
bottom or left edge of a retained rectangle.

Coverage bits that correspond to sample points either inside or on the bottom
or left edge of a retained rectangle are 1, other coverage bits are 0. The associated
data for each sample are those associated with the current raster position. Once the
fragments have been produced, the current raster position is updated exactly as it
is in the single-sample rasterization case.

3.8 Texturing

Texturing maps a portion of one or more specified images onto each primitive for
which texturing is enabled. This mapping is accomplished by using the color of an
image at the location indicated by a fragmerit'st, r) coordinates to modify the
fragment’s primary RGBA color. Texturing does not affect the secondary color.

An implementation may support texturing using more than one image at a time.
In this case the fragment carries multiple sets of texture coordifates-) which
are used to index separate images to produce color values which are collectively
used to modify the fragment’s RGBA color. Texturing is specified only for RGBA
mode; its use in color index mode is undefined. The following subsections (up

Version 1.4 - July 24, 2002

3.8. TEXTURING 119

to and including sectio.8.8 specify the GL operation with a single texture and
section3.8.15specifies the details of how multiple texture units interact.

The GL provides a means to specify the details of how texturing of a primitive
is effected. These details include specification of the image to be texture mapped,
the means by which the image is filtered when applied to the primitive, and the
function that determines what RGBA value is produced given a fragment color and
an image value.

3.8.1 Texture Image Specification

The command

void Texlmage3D(enumtarget int level int internalformat
sizei width, sizei height sizei depthint border,
enumformat enum type void *data);

is used to specify a three-dimensional texture imagéarget must be ei-
ther TEXTURES3D, or PROXYTEXTURES3D in the special case discussed in sec-
tion 3.8.11 format type anddatamatch the corresponding argumentiaw-
Pixels (refer to sectiorB.6.4); they specify the format of the image data, the type
of those data, and a pointer to the image data in host memory. fOnmat
STENCIL_INDEX is not allowed.

The groups in memory are treated as being arranged in a sequence of ad-
jacent rectangles. Each rectangle is a two-dimensional image, whose size and
organization are specified by thedth and height parameters tdeximage3D
The values ofJNPACKROW.ENGTHandUNPACKALIGNMENTcontrol the row-to-
row spacing in these images in the same manndéragvPixels. If the value of
the integer parametayNPACKIMAGEHEIGHT is not positive, then the number
of rows in each two-dimensional imagehegight otherwise the number of rows
is UNPACKIMAGE HEIGHT. Each two-dimensional image comprises an integral
number of rows, and is exactly adjacent to its neighbor images.

The mechanism for selecting a sub-volume of a three-dimensional image re-
lies on the integer parameteNPACKSKIP _IMAGES If UNPACKSKIP _IMAGES
is positive, the pointer is advanced UNPACKSKIP _IMAGEStimes the number of
elements in one two-dimensional image before obtaining the first group from mem-
ory. Thendepthtwo-dimensional images are processed, each having a subimage
extracted in the same mannerlxswPixels.

The selected groups are processed exactly aBfawPixels, stopping just
before final conversion. Each R, G, B, A, or depth value so generated is clamped
to [0, 1].

Version 1.4 - July 24, 2002

120 CHAPTER 3. RASTERIZATION

Components are then selected from the resulting R, G, B, A, or depth values to
obtain a texture with thbase internal formaspecified by (or derived fromter-
nalformat Table3.15summarizes the mapping of R, G, B, A, and depth values to
texture components, as a function of the base internal format of the texture image.
internalformatmay be specified as one of the seven internal format symbolic con-
stants listed in tabl8.15 as one of thesized internal formasymbolic constants
listed in table3.16 as one of the specific compressed internal format symbolic con-
stants listed in tabl8.17, or as one of the six generic compressed internal format
symbolic constants listed in tabB18 internalformatmay (for backwards com-
patibility with the 1.0 version of the GL) also take on the integer valyes 3, and
4, which are equivalent to symbolic constantsMINANCE LUMINANCEALPHA
RGB andRGBArespectively. Specifying a value farternalformatthat is not one
of the above values generates the eftRMALID _-VALUE

Textures with a base internal format DEPTHCOMPONENdAre supported by
texture image specification commands onltaigetis TEXTURELD, TEXTUREZ2D,
PROXYTEXTURELD or PROXYTEXTURE2D. Using this format in conjunction
with any othertargetwill result in anINVALID _OPERATIONerror.

Textures with a base internal format@EPTHCOMPONENEquire depth com-
ponent data; textures with other base internal formats require RGBA component
data. The errofNVALID _OPERATIONis generated if the base internal format is
DEPTHCOMPONENandformatis not DEPTHCOMPONENTr if the base internal
format is noDEPTHCOMPONENahdformatis DEPTHCOMPONENT

The GL provides no specific compressed internal formats but does provide a
mechanism to obtain token values for such formats provided by extensions. The
number of specific compressed internal formats supported by the renderer can
be obtained by querying the value 8 MCOMPRESSEDEXTUREFORMATSThe
set of specific compressed internal formats supported by the renderer can be ob-
tained by querying the value @OMPRESSEDEXTUREFORMATSThe only val-
ues returned by this query are those corresponding to formats suitable for general-
purpose usage. The renderer will not enumerate formats with restrictions that need
to be specifically understood prior to use.

Generic compressed internal formats are never used directly as the internal for-
mats of texture images. Ihternalformatis one of the six generic compressed
internal formats, its value is replaced by the symbolic constant for a specific com-
pressed internal format of the GL's choosing with the same base internal format.
If no specific compressed format is availabfgernalformatis instead replaced by
the corresponding base internal format.infernalformatis given as or mapped
to a specific compressed internal format, but the GL can not support images com-
pressed in the chosen internal format for any reason (e.g., the compression format
might not support 3D textures or borderig)ternalformatis replaced by the corre-

Version 1.4 - July 24, 2002

3.8. TEXTURING 121

Base Internal Format RGBA and Depth Values Internal Components

ALPHA A A
DEPTHCOMPONENT| Depth D
LUMINANCE R L
LUMINANCEALPHA | R,A LA
INTENSITY R 1

RGB R,G,B R,G,B
RGBA R,G,B,A R,G,B,A

Table 3.15: Conversion from RGBA and depth pixel components to internal tex-
ture, table, or filter components. See sectigh 13for a description of the texture
component?, G, B, A, L, I, andD.

sponding base internal format and the texture image will not be compressed by the
GL.

Theinternal component resolutias the number of bits allocated to each value
in a texture image. linternalformatis specified as a base internal format, the GL
stores the resulting texture with internal component resolutions of its own choos-
ing. If a sized internal format is specified, the mapping of the R, G, B, A, and
depth values to texture components is equivalent to the mapping of the correspond-
ing base internal format’s components, as specified in talile and the memory
allocation per texture component is assigned by the GL to match the allocations
listed in table3.16as closely as possible. (The definition of closely is left up to the
implementation. Implementations are not required to support more than one reso-
lution for each base internal format.) If a compressed internal format is specified,
the mapping of the R, G, B, A, and depth values to texture components is equiv-
alent to the mapping of the corresponding base internal format’s components, as
specified in tabl&.15 The specified image is compressed using a (possibly lossy)
compression algorithm chosen by the GL.

A GL implementation may vary its allocation of internal component resolution
or compressed internal format based on @eylmage3D Texlmage2D (see be-
low), or TeximagelD(see below) parameter (exceatge?, but the allocation and
chosen compressed image format must not be a function of any other state and can-
not be changed once they are established. In addition, the choice of a compressed
image format may not be affected by ttiataparameter. Allocations must be in-
variant; the same allocation and compressed image format must be chosen each
time a texture image is specified with the same parameter values. These allocation
rules also apply to proxy textures, which are described in se8ti®il

Version 1.4 - July 24, 2002

122

CHAPTER 3. RASTERIZATION

Sized Base R G B A L 1 D
Internal Format Internal Format bits | bits | bits | bits | bits | bits | bits
ALPHA4 ALPHA 4

ALPHAS8 ALPHA 8

ALPHA12 ALPHA 12

ALPHA16 ALPHA 16
DEPTHCOMPONENT16 | DEPTHCOMPONENT 16
DEPTHCOMPONENT24 | DEPTHCOMPONENTT 24
DEPTHCOMPONENT32 | DEPTHCOMPONENT 32
LUMINANCE4 LUMINANCE 4
LUMINANCES LUMINANCE 8
LUMINANCE12 LUMINANCE 12
LUMINANCE16 LUMINANCE 16
LUMINANCE4ALPHA4 LUMINANCEALPHA 4 4
LUMINANCEGALPHAZ2 LUMINANCEALPHA 2 6
LUMINANCESALPHAS8 LUMINANCEALPHA 8 8
LUMINANCE12ALPHA4 | LUMINANCEALPHA 4 12
LUMINANCE12ALPHA12 | LUMINANCEALPHA 12 | 12
LUMINANCE16ALPHA16 | LUMINANCEALPHA 16 16
INTENSITY4 INTENSITY 4
INTENSITYS8 INTENSITY 8
INTENSITY12 INTENSITY 12
INTENSITY16 INTENSITY 16
R3.G3.B2 RGB 3 3 2

RGB4 RGB 4 4 4

RGB5 RGB 5 5 5

RGBS RGB 8 8 8

RGB10 RGB 10 | 10 | 10

RGB12 RGB 12 12 12

RGB16 RGB 16 16 16

RGBA2 RGBA 2 2 2 2

RGBA4 RGBA 4 4 4 4

RGB5A1 RGBA 5 5 5 1

RGBAS8 RGBA 8 8 8 8

RGB10A2 RGBA 10 | 10 | 10 | 2

RGBA12 RGBA 12 | 12 | 12 | 12

RGBA16 RGBA 16 16 16 16

Table 3.16: Correspondence of sized internal formats to base internal formats, and
desiredcomponent resolutions for each sized internal format.

Version 1.4 - July 24, 2002

3.8. TEXTURING 123

| Compressed Internal FormatBase Internal Formatt
| (none) \ |

Table 3.17: Specific compressed internal formats. None are defined by OpenGL
1.3; however, several specific compression types are defined in GL extensions.

| Generic Compressed Internal FormjaBase Internal Format

COMPRESSEBLPHA ALPHA
COMPRESSEDUMINANCE LUMINANCE
COMPRESSEDUMINANCEALPHA LUMINANCEALPHA
COMPRESSEINTENSITY INTENSITY
COMPRESSERGB RGB
COMPRESSERGBA RGBA

Table 3.18: Generic compressed internal formats.

The image itself (pointed to bglata) is a sequence of groups of values. The
first group is the lower left back corner of the texture image. Subsequent groups
fill out rows of widthwidth from left to right; heightrows are stacked from bottom
to top forming a single two-dimensional image slice; alapthslices are stacked
from back to front. When the final R, G, B, and A components have been computed
for a group, they are assigned to componentstekalas described by table 15
Counting from zero, each resultingth texel is assigned internal integer coordi-
nates(i, j, k), where

i = (N mod width) — by

j= (LwidthJ mod height) — by

(o

width X height
andb;, is the specifiedborderwidth. Thus the last two-dimensional image slice of
the three-dimensional image is indexed with the highest valde of

Each color component is converted (by rounding to nearest) to a fixed-point

value withn bits, wheren is the number of bits of storage allocated to that com-
ponent in the image array. We assume that the fixed-point representation used
represents each valug/ (2" — 1), wherek € {0,1,...,2" — 1}, ask (e.g. 1.0is
represented in binary as a string of all ones).

| mod depth) — bs

Version 1.4 - July 24, 2002

124 CHAPTER 3. RASTERIZATION

Thelevelargument tdfeximage3Dis an integetevel-of-detainumber. Levels
of detail are discussed below, unddipmapping. The main texture image has a
level of detail number of 0. If a level-of-detail less than zero is specified, the error
INVALID _VALUEIs generated.

The border argument toTeximage3Dis a border width. The significance of
borders is described below. The border width affects the required dimensions of
the texture image: it must be the case that

wg = 2" + 2b, (3.13)
he = 2™ + 2b, (3.14)
dy = 2! + 2, (3.15)

for some integers, m, andl, wherews, hs, andd; are the specified imageidth,
height anddepth If any one of these relationships cannot be satisfied, then the
errorINVALID _VALUEIs generated.

Currently, the maximum border width is 1. If b, is less than zero, or greater
thanb,, then the erroNVALID _VALUEIs generated.

The maximum allowable width, height, or depth of a three-dimensional texture
image is an implementation dependent function of the level-of-detail and internal
format of the resulting image array. It must be at |@4st°? 4 2b, for image arrays
of level-of-detail0 throughk, wherek is the log base 2 dAX3D_TEXTURESIZE,,
lod is the level-of-detail of the image array, abdis the maximum border width.

It may be zero for image arrays of any level-of-detail greater tharThe error
INVALID _VALUEIs generated if the specified image is too large to be stored under
any conditions.

In a similar fashion, the maximum allowable width of a one- or two-
dimensional texture image, and the maximum allowable height of a two-
dimensional texture image, must be at lezst'? + 20, for image arrays of level
0 throughk, wherek is the log base 2 dIAXTEXTURESIZE . The maximum al-
lowable width and height of a cube map texture must be the same, and must be at
least2k—lod 4 9p, for image arrays level O through wherek is the log base 2 of
MAXCUBEMARTEXTURESIZE .

An implementation may allow an image array of level 0 to be created only if
that single image array can be supported. Additional constraints on the creation of
image arrays of level 1 or greater are described in more detail in s€c8adli

The command

Version 1.4 - July 24, 2002

3.8. TEXTURING 125

void Texlmage2 enumtarget int level
int internalformat sizei width, sizei height
int border, enum format enum type void *data);

is used to specify a two-dimensional texture image. target must
be one of TEXTURE2D for a two-dimensional texture, or one of
TEXTURECUBEMARPOSITIVE _X, TEXTURECUBEMARNEGATIVEX,
TEXTURECUBEMAPPOSITIVE .Y, TEXTURECUBEMAPNEGATIVEY,
TEXTURECUBEMAPPOSITIVE _Z, or TEXTURECUBEMAPNEGATIVEZ for
a cube map texture. Additionallyarget may be eithePROXYTEXTURE2D for
a two-dimensional proxy texture BROXYTEXTURECUBEMAPfor a cube map
proxy texture in the special case discussed in se¢iril The other parameters
match the corresponding parameterJeXimage3D

For the purposes of decoding the texture imagxImage2Dis equivalent to
calling Teximage3Dwith corresponding arguments addpthof 1, except that

e Thedepthof the image is always 1 regardless of the valubafler.

e Convolution will be performed on the image (possibly changingwiigth
andheigh) if SEPARABLE2D or CONVOLUTIONED is enabled.

e UNPACKSKIP _IMAGESiIs ignored.

A two-dimensional texture consists of a single two-dimensional texture image.

A cube map texture is a set of six two-dimensional texture images. The six cube
map texture targets form a single cube map texture though each target names a
distinct face of the cube map. TREXTURECUBEMAP* targets listed above up-

date their appropriate cube map face 2D texture image. Note that the six cube map
two-dimensional image tokens suchT&xTURECUBEMAPPOSITIVE _X are used

when specifying, updating, or querying one of a cube map’s six two-dimensional
images, but when enabling cube map texturing or binding to a cube map texture
object (that is when the cube map is accessed as a whole as opposed to a particular
two-dimensional image), thHEEXTURECUBEMAPtarget is specified.

When thetarget parameter taleximage2Dis one of the six cube map two-
dimensional image targets, the erfigWALID VALUEIs generated if thevidthand
heightparameters are not equal.

Finally, the command

void Texlmagel enumtarget int level

int internalformat sizei width, int border,
enumformat enum type void *data);

Version 1.4 - July 24, 2002

126 CHAPTER 3. RASTERIZATION

is used to specify a one-dimensional texture imaggarget must be either
TEXTURELD, or PROXYTEXTURELD in the special case discussed in sec-
tion 3.8.11)

For the purposes of decoding the texture imagxlmagelDis equivalent to
calling Teximage2Dwith corresponding arguments ahdightof 1, except that

e Theheightof the image is always 1 regardless of the valubafer.

e Convolution will be performed on the image (possibly changingvitdth)
only if CONVOLUTIOND is enabled.

An image with zero width, heighfTéeximage2D and Teximage3D only), or
depth Texlmage3Donly) indicates the null texture. If the null texture is specified
for the level-of-detail specified by texture parameleXTUREBASELEVEL (see
section3.8.9), it is as if texturing were disabled.

The image indicated to the GL by the image pointer is decoded and copied into
the GL's internal memaory. This copying effectively places the decoded image in-
side a border of the maximum allowable widthwhether or not a border has been
specified (see figurd.10) 1. If no border or a border smaller than the maximum
allowable width has been specified, then the image is still stored as if it were sur-
rounded by a border of the maximum possible width. Any excess border (which
surrounds the specified image, including any border) is assigned unspecified val-
ues. A two-dimensional texture has a border only at its left, right, top, and bottom
ends, and a one-dimensional texture has a border only at its left and right ends.

We shall refer to the (possibly border augmented) decoded image testhe
array. A three-dimensional texture array has width, height, and depth

Wt = 2" +2bt
hy = 2™ 4 2b;
dy = 2! + 2b,

whereb;, is the maximum allowable border width amg m, andi are defined in
equations3.13 3.14, and3.15 A two-dimensional texture array has degih= 1,
with height h; and widthw; as above, and a one-dimensional texture array has
depthd; = 1, heighth; = 1, and widthw; as above.

An element(i, j, k) of the texture array is calledtaexel(for a two-dimensional
texture,k is irrelevant; for a one-dimensional textugeandk are both irrelevant).
The texture valueused in texturing a fragment is determined by that fragment’s

Version 1.4 - July 24, 2002

3.8. TEXTURING 127
5.0 PRl Ikl il Ikl teehiehf vhiehiehll Inehiehiehl (el ekl Ish bl
4
1.0 RS S B S R . . —
3|
2} ‘O(
tovoj |
1 P
i}
0.0 o2 e ——
_15
_lO ---
-1 0 1 2 3,4 5 6 7 8
-1.0 u 9.0
0.0 s 1.0

Figure 3.10. A texture image and the coordinates used to access it. This is &
dimensional texture witm = 3 andm = 2. A one-dimensional texture would
consist of a single horizontal strip. and/3, values used in blending adjacent texe

to obtain a texture value, are also shown.

Version 1.4 - July 24, 2002

two-

Is

128 CHAPTER 3. RASTERIZATION

associateds, t,r) coordinates, but may not correspond to any actual texel. See
figure3.10

If the dataargument offeximagelD Texlmage2D or Teximage3Dis a null
pointer (a zero-valued pointer in the C implementation), a one-, two-, or three-
dimensional texture array is created with the specitieget level internalformat
width, height anddepth but with unspecified image contents. In this case no pixel
values are accessed in client memory, and no pixel processing is performed. Errors
are generated, however, exactly as thougldtta pointer were valid.

3.8.2 Alternate Texture Image Specification Commands

Two-dimensional and one-dimensional texture images may also be specified us-
ing image data taken directly from the framebuffer, and rectangular subregions of
existing texture images may be respecified.

The command

void CopyTexlmage2d enumtarget int level
enuminternalformatint x, int vy, sizei width,
sizei height int border);

defines a two-dimensional texture array in exactly the mannefTeofim-

age2D except that the image data are taken from the framebuffer rather
than from client memory. Currentlytarget must be one OfTEXTURE2D,
TEXTURECUBEMARPOSITIVE _X, TEXTURECUBEMARNEGATIVEX,
TEXTURECUBEMARPOSITIVE Y, TEXTURECUBEMARNEGATIVEY,
TEXTURECUBEMARPOSITIVE _Z, or TEXTURECUBEMARNEGATIVEZ. X, YV,

width, andheightcorrespond precisely to the corresponding argumentofyP-

ixels (refer to sectior.3.3; they specify the image'width and height and the

lower left (x,y) coordinates of the framebuffer region to be copied. The im-
age is taken from the framebuffer exactly as if these arguments were passed to
CopyPixelswith argumentype set toCOLOR or DEPTH depending orinternal-
format, stopping after pixel transfer processing is complete. RGBA data is taken
from the current color buffer while depth component data is taken from the depth
buffer. If depth component data is required and no depth buffer is present, the
error INVALID _OPERATIONIs generated. Subsequent processing is identical to
that described fofexlmage2D, beginning with clamping of the R, G, B, A, or
depth values from the resulting pixel groups. Paramé¢eed internalformat and
borderare specified using the same values, with the same meanings, as the equiv-
alent arguments ofexlmage2D, except thatnternalformatmay not be specified

! Figure3.10needs to show a three-dimensional texture image.

Version 1.4 - July 24, 2002

3.8. TEXTURING 129

asl, 2, 3, or4. Aninvalid value specified fomternalformatgenerates the error
INVALID _ENUMThe constraints owidth, height andborderare exactly those for
the equivalent arguments d&xImage2D

When thetarget parameter tcCopyTexlmage2Dis one of the six cube map
two-dimensional image targets, the eneVALID _VALUEIs generated if thevidth
andheightparameters are not equal.

The command

void CopyTexlmagelld enumtarget int level
enuminternalformatint x, int vy, sizei width,
int border);

defines a one-dimensional texture array in exactly the manng&eximagelD
except that the image data are taken from the framebuffer, rather than from client
memory. Currentlytarget must beTEXTURELD. For the purposes of decoding
the texture imageCopyTeximagelDis equivalent to callingCopyTexlmage2D
with corresponding arguments ahdightof 1, except that théeightof the image
is always 1, regardless of the valuelmdrder. level internalformat andborder
are specified using the same values, with the same meanings, as the equivalent
arguments offexlmagelD, except thainternalformatmay not be specified ds
2, 3, or4. The constraints owidth andborderare exactly those of the equivalent
arguments offexlmagelD

Six additional commands,

void TexSublmage3l enumtarget int level int xoffset
int yoffsetint zoffsetsizei width, sizei height
sizei depth enum format enum type void *data);

void TexSublmage2l enumtarget int level int xoffset
int yoffsetsizei width, sizei height enum format,
enumtype void *data);

void TexSublmagell enumtarget int level int xoffset
sizei width, enum format enum type void *data);

void CopyTexSublmage3 enumtarget int level
int xoffsetint yoffsetint zoffsetint x,int vy,
sizei width, sizei height);

void CopyTexSublmage2 enumtarget int level
int xoffsetint yoffsefint x,int vy, sizei width,
sizei height);

void CopyTexSublmagell enumtarget int level
int xoffsetint x,int vy, sizei width);

Version 1.4 - July 24, 2002

130 CHAPTER 3. RASTERIZATION

respecify only a rectangular subregion of an existing texture array. No change
is made to theinternalformat width, height depth or border parameters
of the specified texture array, nor is any change made to texel values out-
side the specified subregion. Currently ttaget arguments ofTexSublm-
agelD and CopyTexSublmagelDmust beTEXTURELD, the target arguments
of TexSublmage2D and CopyTexSublmage2Dmust be one offEXTUREZ2D,
TEXTURECUBEMAPPOSITIVE _X, TEXTURECUBEMAPNEGATIVEX,
TEXTURECUBEMAPPOSITIVE LY, TEXTURECUBEMAPNEGATIVEY,
TEXTURECUBEMAPPOSITIVE _Z, or TEXTURECUBEMAPNEGATIVEZ, and the
target arguments of TexSublmage3D and CopyTexSublmage3D must be
TEXTURESD. Thelevelparameter of each command specifies the level of the tex-
ture array that is modified. IEvelis less than zero or greater than the base 2 log-
arithm of the maximum texture width, height, or depth, the eiNMALID _VALUE
is generated.

TexSublmage3Dargumentsvidth, height depth format type anddatamatch
the corresponding argumentsTeximage3D, meaning that they are specified us-
ing the same values, and have the same meanings. Likevaz&ublmage2D
argumentswidth, height format type anddata match the corresponding argu-
ments toTexlmage2D, andTexSublmagelDargumentsvidth, format type and
datamatch the corresponding argument§éximagelD

CopyTexSublmage3D and CopyTexSublmage2D argumentsx, y, width,
andheightmatch the corresponding argumentiopy Teximage2F. Copy Tex-
SublmagelDargumentsx, y, andwidth match the corresponding arguments to
CopyTexlmagelD Each of theTexSublmagecommands interprets and processes
pixel groups in exactly the manner of itexImage counterpart, except that the as-
signment of R, G, B, A, and depth pixel group values to the texture components
is controlled by theénternalformatof the texture array, not by an argument to the
command. The same constraints and errors apply tbeak8ublmagecommands’
argumentformat and theinternalformatof the texture array being respecified as
apply to theformatandinternalformatarguments of it§exlmage counterparts.

Argumentsxoffsef yoffset and zoffsetof TexSublmage3D and CopyTex-
Sublmage3Dspecify the lower left texel coordinates ofsadth-wide by height
high bydepthdeep rectangular subregion of the texture array. ddmhargument
associated witlCopyTexSublmage3Dis always 1, because framebuffer memory
is two-dimensional - only a portion of a singlet slice of a three-dimensional
texture is replaced b€opyTexSublmage3D

Negative values okoffset yoffset and zoffsetcorrespond to the coordinates

2 Because the framebuffer is inherently two-dimensional, there i€omwy Teximage3Dcom-
mand.

Version 1.4 - July 24, 2002

3.8. TEXTURING 131

of border texels, addressed as in fig#éQ Taking ws, hs, ds, andb, to be

the specified width, height, depth, and border width of the texture array, (not the
actual array dimensions;, h;, d;, andb;), and takingz, y, z, w, h, andd to be

the xoffset yoffset zoffset width, height anddepthargument values, any of the
following relationships generates the erfdWALID VALUE

x < —by
T+ w > ws — b
y < —bs
y+h>hs—bs
z < —by
z+d>ds— bs

(Recall thatd, ws, andh include twice the specified border width.) Count-
ing from zero, thenth pixel group is assigned to the texel with internal integer
coordinatesi, j, k|, where

i =z + (n mod w)
n
= ™| mod h
j=y+ (] modh)
n

width * height

Argumentsxoffsetandyoffsetof TexSublmage2DandCopyTexSublmage2D
specify the lower left texel coordinates ohadth-wide byheighthigh rectangular
subregion of the texture array. Negative valuexaffsetandyoffsetcorrespond
to the coordinates of border texels, addressed as in figu@ Takingws, hs,
and b, to be the specified width, height, and border width of the texture array,
(not the actual array dimensions, h;, andb;), and takingz, y, w, andh to
be thexoffset yoffset width, and heightargument values, any of the following
relationships generates the erlgWALID _VALUE

E=z4+(] | mod d

T < —by
T+ w > ws — b
y < —bs
y+h>hs— b

Version 1.4 - July 24, 2002

132 CHAPTER 3. RASTERIZATION

(Recall thatw, andh, include twice the specified border widih) Counting from
zero, thenth pixel group is assigned to the texel with internal integer coordinates
[i, 7], where

i =2+ (n mod w)
j=y+ () mod h)

The xoffsetargument ofTexSublmagelDand CopyTexSublmagelDspeci-
fies the left texel coordinate ofwmidth-wide subregion of the texture array. Neg-
ative values ofoffsetcorrespond to the coordinates of border texels. Taking
andb; to be the specified width and border width of the texture array,zaadd
w to be thexoffsetandwidth argument values, either of the following relationships
generates the erretkVALID _VALUE

T < —by
T+ w > ws — by

Counting from zero, theth pixel group is assigned to the texel with internal integer
coordinatesi|, where

i =+ (n mod w)

Texture images with compressed internal formats may be stored in such a way
that it is not possible to modify an image with subimage commands without having
to decompress and recompress the texture image. Even if the image were modi-
fied in this manner, it may not be possible to preserve the contents of some of
the texels outside the region being modified. To avoid these complications, the
GL does not support arbitrary modifications to texture images with compressed
internal formats. CallingifexSublmage3D CopyTexSublmage3D TexSubim-
age2D CopyTexSublmage2D TexSublmagelD or CopyTexSublmagelDwill
result in anINVALID _OPERATIONerror if xoffset yoffsef or zoffsetis not equal to
—bs (border width). In addition, the contents of any texel outside the region mod-
ified by such a call are undefined. These restrictions may be relaxed for specific
compressed internal formats whose images are easily modified.

3.8.3 Compressed Texture Images

Texture images may also be specified or modified using image data already stored
in a known compressed image format. The GL currently defines no such formats,
but provides mechanisms for GL extensions that do.

The commands

Version 1.4 - July 24, 2002

3.8. TEXTURING 133

void CompressedTeximagelDenumtarget int level
enum internalformat sizei width, int border,
sizei imageSizevoid *data);

void CompressedTexlmage2Denumtarget int level
enuminternalformat sizei ~ width, sizei height
int border, sizei imageSizevoid *data);

void CompressedTexlmage3Denumtarget int level
enuminternalformat sizei width, sizei height
sizei depthint border, sizei imageSizevoid *data);

define one-, two-, and three-dimensional texture images, respectively, with incom-
ing data stored in a specific compressed image format.target level internal-
format, width, height depth andborder parameters have the same meaning as in
TeximagelD, TexImage2D andTexImage3D datapoints to compressed image
data stored in the compressed image format correspondintgtoalformat Since

the GL provides no specific image formats, using any of the six generic compressed
internal formats amternalformatwill result in anINVALID _ENUMerror.

For all other compressed internal formats, the compressed image will be de-
coded according to the specification defining theernalformattoken. Com-
pressed texture images are treated as an arragageSizaibyte s beginning at
addresslata All pixel storage and pixel transfer modes are ignored when decoding
a compressed texture image. If tineageSizgparameter is not consistent with the
format, dimensions, and contents of the compressed imag&\VvaiLID -VALUE
error results. If the compressed image is not encoded according to the defined
image format, the results of the call are undefined.

Specific compressed internal formats may impose format-specific restrictions
on the use of the compressed image specification calls or parameters. For example,
the compressed image format might be supported only for 2D textures, or might
not allow non-zerdordervalues. Any such restrictions will be documented in the
extension specification defining the compressed internal format; violating these
restrictions will result in aiNVALID _OPERATIONerror.

Any restrictions imposed by specific compressed internal formats will be
invariant, meaning that if the GL accepts and stores a texture image in
compressed form, providing the same image GompressedTeximagelD
CompressedTexlmage2D or CompressedTexlmage3Dwill not result in an
INVALID _OPERATIONerror if the following restrictions are satisfied:

e datapoints to a compressed texture image returne@éyCompressedTex-
Image (section6.1.4).

Version 1.4 - July 24, 2002

134 CHAPTER 3. RASTERIZATION

¢ target level andinternalformatmatch thetarget, levelandformat parame-
ters provided to th&etCompressedTexImageall returningdata

e width, height depth border, internalformat and image-
Size match the values of TEXTUREWIDTH TEXTUREHEIGHT,
TEXTUREDEPTH TEXTUREBORDER TEXTUREINTERNALFORMAT
and TEXTURECOMPRESSEMAGESIZE for image levellevelin effect at
the time of theGetCompressedTexlmageall returningdata

This guarantee applies not just to images returne@GéyCompressedTexlmage
but also to any other properly encoded compressed texture image of the same size
and format.

The commands

void CompressedTexSublmagelDenumtarget int level
int xoffsetsizei width, enum format sizei imageSize
void *data);

void CompressedTexSublmage2Penumtarget int level
int xoffsetint yoffsefsizei width, sizei height
enumformat sizei imageSizevoid *data);

void CompressedTexSubimage3Penumtarget int level
int xoffsetint yoffsefint zoffsetsizei width,
sizei height sizei depth enum format,
sizei imageSizevoid *data);

respecify only a rectangular region of an existing texture array, with incoming data
stored in a known compressed image format. {Enget, level xoffset yoffset zoff-
set width, height anddepthparameters have the same meaning aekSublm-
agelD TexSublmage2D and TexSublmage3D data points to compressed im-
age data stored in the compressed image format correspondiogrtat Since
the core GL provides no specific image formats, using any of these six generic
compressed internal formatsfasmatwill result in anINVALID _ENUMerror.

The image pointed to byata and theimageSizeparameter are interpreted
as though they were provided @ompressedTexImagelPCompressedTexim-
age2D andCompressedTexlmage3DThese commands do not provide for im-
age format conversion, so aNVALID _OPERATIONerror results ifformat does
not match the internal format of the texture image being modified. lirtteye-
Sizeparameter is not consistent with the format, dimensions, and contents of the
compressed image (too little or too much data)iNWALID VALUEerror results.

As with CompressedTeximagecalls, compressed internal formats may have
additional restrictions on the use of the compressed image specification calls or

Version 1.4 - July 24, 2002

3.8. TEXTURING 135

parameters. Any such restrictions will be documented in the specification defin-
ing the compressed internal format; violating these restrictions will result in an
INVALID _.OPERATIONError.

Any restrictions imposed by specific compressed internal formats will be
invariant, meaning that if the GL accepts and stores a texture image in com-
pressed form, providing the same imageCtmmpressedTexSublmagelPCom-
pressedTexSublmage2pD CompressedTexSublmage3Dwill not result in an
INVALID _OPERATIONerror if the following restrictions are satisfied:

e datapoints to a compressed texture image returne@eyCompressedTex-
Image (section6.1.9.

¢ target level andformatmatch thetarget levelandformatparameters pro-
vided to theGetCompressedTexImageall returningdata

e width, height depth format and imageSize match the val-
ues of TEXTUREWIDTH TEXTUREHEIGHT, TEXTUREDEPTH
TEXTUREINTERNAL FORMAT and TEXTURECOMPRESSEMIAGESIZE
for image levelevelin effect at the time of th&etCompressedTexlmage
call returningdata

e width, height depth format match the values OfTEXTUREWIDTH
TEXTUREHEIGHT, TEXTUREDEPTH and TEXTUREINTERNAL FORMAT
currently in effect for image levdével

e xoffset yoffset and zoffset are all —b, where b is the value of
TEXTUREBORDERurrently in effect for image levédével

This guarantee applies not just to images returne@&CompressedTexim-
age but also to any other properly encoded compressed texture image of the same
size.

Calling CompressedTexSublmage3P CompressedTexSublmage2pP or
CompressedTexSublmagelill resultin anINVALID _OPERATIONerror if xoff-
set yoffset or zoffsetis not equal to—bs (border width), or ifwidth, height
and depthdo not match the values GfEXTUREWIDTH TEXTUREHEIGHT, or
TEXTUREDEPTH respectively. The contents of any texel outside the region modi-
fied by the call are undefined. These restrictions may be relaxed for specific com-
pressed internal formats whose images are easily modified.

3.8.4 Texture Parameters

Various parameters control how the texture array is treated when specified or
changed, and when applied to a fragment. Each parameter is set by calling

Version 1.4 - July 24, 2002

136 CHAPTER 3. RASTERIZATION

void TexParameter{if }(enumtarget enum pnameT param);
void TexParameter{if }v(enumtarget enum pname
T params);

target is the target, eitherTEXTURELD, TEXTURE2D, TEXTURE3D, or
TEXTURECUBEMAP pnameis a symbolic constant indicating the parameter to

be set; the possible constants and corresponding parameters are summarized in ta-
ble 3.19 In the first form of the commangyaramis a value to which to set a
single-valued parameter; in the second form of the commpaidmsis an array

of parameters whose type depends on the parameter being set. If the values for
TEXTUREBORDERCOLORare specified as integers, the conversion for signed inte-
gers from table?2.6 is applied to convert the values to floating-point. Each of the
four values set byEXTUREBORDERCOLORS clamped to lie irf0, 1].

In the remainder of sectior8.8, denote bylod,in, (0dmaz, levelpase,
and level,,., the values of the texture parametemEXTUREMIN_LOD
TEXTUREMAXLOD TEXTUREBASELEVEL, and TEXTUREMAXLEVEL respec-
tively.

Texture parameters for a cube map texture apply to the cube map as a whole;
the six distinct two-dimensional texture images use the texture parameters of the
cube map itself.

If the value of texture paramet&ENERATEMIPMAPIs TRUE specifying or
changing texture arrays may have side effects, which are discussed Aatthe
matic Mipmap Generation discussion of sectiofi.8.8

3.8.5 Depth Component Textures

Depth textures can be treatedlA$MINANCEINTENSITY or ALPHAtextures dur-
ing texture filtering and application. The initial state for depth textures treats them
asLUMINANCHextures.

3.8.6 Cube Map Texture Selection

When cube map texturing is enabled, fle ¢ r) texture coordinates are treated

as a direction vectofr, r, r,) emanating from the center of a cube (ipe
coordinate can be ignored, since it merely scales the vector without affecting the
direction.) At texture application time, the interpolated per-fragment direction vec-
tor selects one of the cube map face’s two-dimensional images based on the largest
magnitude coordinate direction (the major axis direction). If two or more coor-
dinates have the identical magnitude, the implementation may define the rule to
disambiguate this situation. The rule must be deterministic and depend only on

Version 1.4 - July 24, 2002

3.8. TEXTURING 137

Name | Type | Legal Values |

TEXTUREWRABS integer | CLAMRCLAMPTO EDGEREPEAT
CLAMPTO.BORDER
MIRROREIREPEAT
TEXTUREWRAPT integer | CLAMPCLAMPTO.EDGEREPEAT
CLAMPTO.BORDER
MIRRORELREPEAT
TEXTUREWRAER integer | CLAMPCLAMPTO.EDGEREPEAT
CLAMPTOBORDER
MIRRORELREPEAT
TEXTUREMIN_FILTER integer | NEAREST

LINEAR,
NEARESITMIPMARPNEAREST
NEARESTMIPMARLINEAR,
LINEAR_MIPMARPNEAREST
LINEAR_MIPMAPRLINEAR,

TEXTUREMAGFILTER integer | NEAREST

LINEAR
TEXTUREBORDERCOLOR| 4 floats | any 4 values iff0, 1]
TEXTUREPRIORITY float | any value in0, 1]
TEXTUREMIN_LOD float | any value
TEXTUREMAXLOD float | any value
TEXTUREBASELEVEL integer | any non-negative integer
TEXTUREMAXLEVEL integer | any non-negative integer
TEXTURELODBIAS float | any value

DEPTHTEXTUREMODE enum | LUMINANCEINTENSITY , ALPHA
TEXTURECOMPARBMODE| enum | NONECOMPARR TO.TEXTURE
TEXTURECOMPARIEUNC| enum | LEQUAL GEQUAL
GENERATEMIPMAP boolean| TRUEor FALSE

Table 3.19: Texture parameters and their values.

Version 1.4 - July 24, 2002

138 CHAPTER 3. RASTERIZATION

| Major Axis Direction | Target [sc |te | ma|
+7ry TEXTURECUBEMARPOSITIVE X | —1, Ty | Tz
—Ty TEXTURECUBEMARPNEGATIVEX | r, Ty | Tz
+ry TEXTURECUBEMARPOSITIVE LY | 7, Ty Ty
—Ty TEXTURECUBEMARNEGATIVEY | 7, =Ty | Ty
+7r, TEXTURECUBEMARPOSITIVE Z | r, —Ty | T2
—r, TEXTURECUBEMARNEGATIVEZ | —ry | —1y | T2

Table 3.20: Selection of cube map images based on major axis direction of texture
coordinates.

(ry 7y 7). The target column in table.20explains how the major axis direc-
tion maps to the two-dimensional image of a particular cube map target.

Using thes,, t., andm, determined by the major axis direction as specified in
table3.20 an updated s t) is calculated as follows:

s (o)

§=— +1

2\ |[ma|
(e +y)

t=— +1
2\ |myg]

This new(s t) is used to find a texture value in the determined face’s two-
dimensional texture image using the rules given in sectiods’through3.8.9

3.8.7 Texture Wrap Modes

Wrap modes defined by the values TEXTUREWRABS, TEXTUREWRAEPT, or
TEXTUREWRARR respectively affect the interpretation ef ¢, andr texture co-
ordinates. The effect of each mode is described below.

Wrap Mode REPEAT

Wrap modeREPEATignores the integer part of texture coordinates, using only the
fractional part. (For a numbef, the fractional part i — | f|, regardless of the
sign of f; recall that the | function truncates towardsco.)

REPEATIs the default behavior for all texture coordinates.
Wrap Mode CLAMP

Wrap modeCLAMPclamps texture coordinates to rarigel].

Version 1.4 - July 24, 2002

3.8. TEXTURING 139

Wrap Mode CLAMPTOEDGE

Wrap modeCLAMPTO EDGEclamps texture coordinates at all mipmap levels such
that the texture filter never samples a border texel. The color returned when clamp-
ing is derived only from texels at the edge of the texture image.

Texture coordinates are clamped to the rajpga:, max|. The minimum value
is defined as

min = —

2N

where N is the size of the one-, two-, or three-dimensional texture image in the
direction of clamping. The maximum value is defined as

maxr =1 — min

so that clamping is always symmetric about {fgl] mapped range of a texture
coordinate.

Wrap Mode CLAMPTO BORDER

Wrap modeCLAMPTO.BORDER:lamps texture coordinates at all mipmaps such
that the texture filter always samples border texels for fragments whose correspond-
ing texture coordinate is sufficiently far outside the raftge]. The color returned
when clamping is derived only from the border texels of the texture image, or from
the constant border color if the texture image does not have a border.

Texture coordinates are clamped to the rajpga:, maz|. The minimum value
is defined as

-1

2N

whereN is the size (not including borders) of the one-, two-, or three-dimensional
texture image in the direction of clamping. The maximum value is defined as

min =

maxr =1 — min
so that clamping is always symmetric about {bgl] mapped range of a texture
coordinate.
Wrap Mode MIRRORELREPEAT
Wrap modeMIRRORELREPEATTirst mirrors the texture coordinate, where mirror-

ing a valuef computes

Version 1.4 - July 24, 2002

140 CHAPTER 3. RASTERIZATION

. =15 | f] is even
mirror(f) = { 1—(f=Lf]), |f]isodd

The mirrored coordinate is then clamped as described above for wrap mode
CLAMPTOEDGE

3.8.8 Texture Minification

Applying a texture to a primitive implies a mapping from texture image space to
framebuffer image space. In general, this mapping involves a reconstruction of
the sampled texture image, followed by a homogeneous warping implied by the
mapping to framebuffer space, then a filtering, followed finally by a resampling

of the filtered, warped, reconstructed image before applying it to a fragment. In
the GL this mapping is approximated by one of two simple filtering schemes. One
of these schemes is selected based on whether the mapping from texture space to
framebuffer space is deemedrt@agnifyor minify the texture image.

Scale Factor and Level of Detail

The choice is governed by a scale factor, y) and thelevel of detailparameter
A(z,y), defined as

N(z,y) = logs[p(z,y)] + clamp(texobjias + texunity;qs)

lOdmax, N> lodmaz
>‘,7 lOdmzn < N < lOdmaaf;
A= lOdmm, N < lOdmm (316)

undefined, lodpyin > lodpyas

texobjpiqs IS the value ofTEXTURELODBIAS for the bound texture object (as
described in sectio.8.4), andtexunity;,, is the value ofTEXTURELODBIAS
for the current texture unit (as described in sectb@.13. The sum of these
values is clamped to the rangebia s, oz, biasmas] Wherebias,, . is the value of
the implementation defined constamAXTEXTURELODBIAS.

If A(z,y) is less than or equal to the constan{described below in sec-
tion 3.8.9 the texture is said to be magnified; if it is greater, the texture is minified.

Version 1.4 - July 24, 2002

3.8. TEXTURING 141

The initial values oflod,,;, andlod,,., are chosen so as to never clamp the
normal range of\. They may be respecified for a specific texture by callieg-
Parameter[if] with pname set to TEXTUREMIN_LOD or TEXTUREMAXLOD re-
spectively.

Let s(z,y) be the function that associates amexture coordinate with each
set of window coordinateéz, y) that lie within a primitive; define(z,y) and
r(x,y) analogously. Let(z,y) = 2"s(x, y), v(z,y) = 2™t(z,y), andw(z,y) =
2lr(x,y), wheren, m, andl are as defined by equatioRsl3 3.14 and3.15with
ws, hg, andd, equal to the width, height, and depth of the image array whose level
iS levelpqse. FOr a one-dimensional texture, defingr,y) = 0 andw(x,y) = 0;
for a two-dimensional texture, defing(x,y) = 0. For a polygony is given at a
fragment with window coordinates:, y) by

ou\? ov\ ? ow\ ? ou\? ov\ 2 ow\ ?
om0 (30 ()) G+ ()}
(3.17)
wheredu/0x indicates the derivative af with respect to window, and similarly

for the other derivatives.
For a line, the formula is

ou ou 2 ov ov 2 ow ow 2
(3.18)

whereAzr = x5 — x1 and Ay = yo — y1 With (x1,y1) and (z2, y2) being the
segment’s window coordinate endpoints dnd \/Az? + Ay2. For a point, pixel
rectangle, or bitmap = 1.

While it is generally agreed that equatiohd 7 and 3.18 give the best results
when texturing, they are often impractical to implement. Therefore, an imple-
mentation may approximate the ideawith a function f(z,y) subject to these
conditions:

1. f(z,y) is continuous and monotonically increasing in each/af/0z],

|Ou/0y|, |0v/dz|, |0v/dy|, |ow/Ox|, and|Ow/dy|
2. Let
my, = m x{ Ou| | Ou }
w T W oz | oy
my =m x{ Ou] |0v }
o T Moz) Oy

Version 1.4 - July 24, 2002

142 CHAPTER 3. RASTERIZATION

anl}

Thenmax{m,, m,, my} < f(x,y) < my + my + my,.

@
ox

9

My = max{

When)\ indicates minification, the value assignedT®XTUREMIN_FILTER
is used to determine how the texture value for a fragment is selected. When
TEXTUREMIN_FILTER is NEARESTthe texel in the image array of levieghely,s.
that is nearest (in Manhattan distance) to that specifigad byr) is obtained. This
means the texel at locatid®, j, k) becomes the texture value, witlgiven by

. Uul, s<1
z:{ %nJ_1 el (3.19)

(Recall that fTEXTUREWRARS is REPEAT then0 < s < 1.) Similarly, j is found
as

N t<1
andk is found as
) lw), r<d
k_{ 91 -1 (3.22)

For a one-dimensional texturg,and k are irrelevant; the texel at locationbe-
comes the texture value. For a two-dimensional texture jrrelevant; the texel at
location(i, j) becomes the texture value.

When TEXTUREMIN_FILTER is LINEAR, a2 x 2 x 2 cube of texels in the
image array of levelevely,. is selected. This cube is obtained by first clamping
texture coordinates as described in secldh?7 (if the wrap mode for a coordinate
is CLAMPor CLAMPTO.EDGH and computing

. _ [lu=1/2] mod 2", TEXTUREWRARSis REPEAT
7 lu—1/2], otherwise

[|v=1/2) mod 2™, TEXTUREWRAET is REPEAT
0= o —1/2], otherwise

and

Version 1.4 - July 24, 2002

3.8. TEXTURING 143

L { |w—1/2] mod 2!, TEXTUREWRAERis REPEAT
0 =

lw—1/2], otherwise
Then
. (io + 1) mod 2", TEXTUREWRAFS is REPEAT
11 = . .
10+ 1, otherwise
[(jo+1) mod 2™, TEXTUREWRAPT is REPEAT
= Jo + 1, otherwise
and
b { (ko+1)mod2', TEXTUREWRAERiS REPEAT
7Y ko +1, otherwise
Let

a = frac(u — 1/2)
B = frac(v — 1/2)
v = frac(w — 1/2)

wherefrac(z) denotes the fractional part of
For a three-dimensional texture, the texture valugfound as

T = (1=a)1=B)1 = 7)Tigjoko + (1 = B)(1 = ¥)Tiyjoko
+ (1=) B(1 =) Tigjiko + @B = ¥)Tirjiko
+ (1 = a)(d = B)vTigjoks + (1 = B)VTiyjoky
+ (1 — @) BYTigjiky + OBV Tirjike

wherer;;, is the texel at locatiof, j, k) in the three-dimensional texture image.
For a two-dimensional texture,

T = (1 - Oé)(l - ﬁ)Tl'ojo + a(l - /Q)Tiljo + (1 - a)/gTiojl + aﬁTiljl (322)

wherer;; is the texel at locatiof, j) in the two-dimensional texture image.

Version 1.4 - July 24, 2002

144 CHAPTER 3. RASTERIZATION

And for a one-dimensional texture,
T=(1-0a)n,+am,

wherer; is the texel at locationin the one-dimensional texture.

If any of the selected;;;, 7;;, or 7; in the above equations refer to a border
texel withi < —bg, j < —bs, k < —bg, i > ws — b, j > hg — bs, Orj > ds — by,
then the border values defined BIEXTUREBORDERCOLORare used instead of
the unspecified value or values. If the texture contains color components, the
values of TEXTUREBORDERCOLORAare interpreted as an RGBA color to match
the texture’s internal format in a manner consistent with t&bl& If the texture
contains depth components, the first componentEXTUREBORDERCOLORIS
interpreted as a depth value.

Mipmapping
TEXTUREMIN_FILTER values NEARESTMIPMARPNEAREST
NEARESTMIPMAPLINEAR, LINEAR_MIPMAPNEAREST

and LINEAR_MIPMAPLINEAR each require the use ofrmipmap A mipmap is
an ordered set of arrays representing the same image; each array has a resolution
lower than the previous one. If the image array of lévetl;, .., excluding its bor-
der, has dimensior® x 2™ x 2!, then there arenax{n, m,l} + 1 image arrays in
the mipmap. Each array subsequent to the array of level;,. has dimensions

o(i—1)xo(j—1)xo(k—1)

where the dimensions of the previous array are

o(i) x o(j) x o(k)

o(z) = { 2T x>0
1 =<0
until the last array is reached with dimensibx 1 x 1.

Each array in a mipmap is defined usifgxlmage3D Texlmage2D Copy-
TexIimage2D TexImagelD or CopyTexlmagelD the array being set is indicated
with the level-of-detail argumenrevel Level-of-detail numbers proceed from
levely,se for the original texture array through= max{n, m, [} + levelp,se With
each unitincrease indicating an array of half the dimensions of the previous one as
already described. All arrays frofavely,s. throughg = min{p, level,,q, } must
be defined, as discussed in sectio8.10

and

Version 1.4 - July 24, 2002

3.8. TEXTURING 145

The values oflevelp,s. andlevel,,.,, Mmay be respecified for a specific tex-
ture by callingTexParameter][if] with pname set toTEXTUREBASELEVEL or
TEXTUREMAXLEVEL respectively.

The erroriNVALID _VALUEIs generated if either value is negative.

The mipmap is used in conjunction with the level of detail to approximate the
application of an appropriately filtered texture to a fragment. d_bé the value
of A\ at which the transition from minification to magnification occurs (since this
discussion pertains to minification, we are concerned only with valugsiadfere
A > o).

For mipmap filters NEARESTMIPMAPNEAREST and
LINEAR_MIPMAPNEARESTthedth mipmap array is selected, where

levelpgse, A<t
d=1< [levelpgse + A+ %W =1, A>3, levelygse + X < g+ % (3.23)
q, A > %’levelbase+)\>Q+%

The rules forNEARESTOr LINEAR filtering are then applied to the selected
array.

For mipmap filters8NEARESTMIPMAPLINEAR andLINEAR_MIPMAPLINEAR,
the leveld; andd, mipmap arrays are selected, where

_] 4 b+A=q
di = { b+ A|, otherwise (3.24)

_] 4 b+A>gq
dz = { dy + 1, otherwise (3.25)

The rules forNEARESTor LINEAR filtering are then applied to each of the
selected arrays, yielding two corresponding texture vailyesnd . The final
texture value is then found as

T = [1 — frac(\)]m + frac(A) 7.

Automatic Mipmap Generation

If the value of texture paramet&ENERATEVIPMAPiIs TRUE making any change

to the interior or border texels of thevely,s. array of a mipmap will also compute

a complete set of mipmap arrays (as defined in se@iénL(derived from the
modifiedlevely, e array. Array leveldevely,s. + 1 throughp are replaced with

the derived arrays, regardless of their previous contents. All other mipmap arrays,
including thelevely,s. array, are left unchanged by this computation.

Version 1.4 - July 24, 2002

146 CHAPTER 3. RASTERIZATION

The internal formats and border widths of the derived mipmap arrays all match
those of thdlevely,se array, and the dimensions of the derived arrays follow the
requirements described in secti®ms.10

The contents of the derived arrays are computed by repeated, filtered reduction
of thelevely,s. array. No particular filter algorithm is required, thoughag box
filter is recommended as the default filter. In some implementations, filter quality
may be affected by hints (sectiéng).

Automatic mipmap generation is available only for non-proxy texture image
targets.

3.8.9 Texture Magnification

When X\ indicates magnification, the value assignedTEXTUREMAGFILTER
determines how the texture value is obtained. There are two possible values
for TEXTUREMAGFILTER : NEARESTandLINEAR. NEARESTbehaves exactly as
NEARESTfor TEXTUREMIN_FILTER (equations3.19 3.20 and3.21are used);
LINEAR behaves exactly ddNEAR for TEXTUREMIN_FILTER (equation3.22is
used). The level-of-detalbvel,, s texture array is always used for magnification.
Finally, there is the choice of, the minification vs. magnification switch-
over point. If the magnification filter is given bYNEAR and the minification
filter is given byNEARESTMIPMAPNEARESTor NEARESTMIPMAPRLINEAR, then
¢ = 0.5. This is done to ensure that a minified texture does not appear “sharper”
than a magnified texture. Otherwise= 0.

3.8.10 Texture Completeness

A texture is said to be complete if all the image arrays and texture parameters
required to utilize the texture for texture application is consistently defined. The
definition of completeness varies depending on the texture dimensionality.

For one-, two-, or three-dimensional textures, a textuinpletef the fol-
lowing conditions all hold true:

e The set of mipmap arraykvely,s. throughq (wheregq is defined in the
Mipmapping discussion of sectioB.8.8 were each specified with the same
internal format.

e The border widths of each array are the same.

e The dimensions of the arrays follow the sequence described Mifiraap-
ping discussion of sectiof.8.8

o levelpyse < levelpan

Version 1.4 - July 24, 2002

3.8. TEXTURING 147

hd levelbase <p

Array levelsk wherek < levely,se OF k > ¢ are insignificant to the definition of
completeness.

For cube map textures, a texturecisbe completé the following conditions
all hold true:

e Thelevely,s. arrays of each of the six texture images making up the cube
map have identical, positive, and square dimensions.

e Thelevely,s. arrays were each specified with the same internal format.

e Thelevely,s. arrays each have the same border width.

Finally, a cube map texture imipmap cube compleig in addition to being
cube complete, each of the six texture images considered individually is complete.

Effects of Completeness on Texture Application

If one-, two-, or three-dimensional texturing (but not cube map textur-
ing) is enabled for a texture unit at the time a primitive is rasterized, if
TEXTUREMIN_FILTER is one that requires a mipmap, and if the texture image
bound to the enabled texture target is not complete, then it is as if texture mapping
were disabled for that texture unit.

If cube map texturing is enabled for a texture unit at the time a primitive
is rasterized, and if the bound cube map texture is not cube complete, then it
is as if texture mapping were disabled for that texture unit. Additionally, if
TEXTUREMIN_FILTER is one that requires a mipmap, and if the texture is not
mipmap cube complete, then it is as if texture mapping were disabled for that tex-
ture unit.

Effects of Completeness on Texture Image Specification

An implementation may allow a texture image array of level 1 or greater to be cre-
ated only if amipmap completset of image arrays consistent with the requested
array can be supported. A mipmap complete set of arrays is equivalent to a com-
plete set of arrays whetevely,s. = 0 andievel,,.. = 1000, and where, excluding
borders, the dimensions of the image array being created are understood to be half
the corresponding dimensions of the next lower numbered array.

Version 1.4 - July 24, 2002

148 CHAPTER 3. RASTERIZATION

3.8.11 Texture State and Proxy State

The state necessary for texture can be divided into two categories. First, there are
the nine sets of mipmap arrays (one each for the one-, two-, and three-dimensional
texture targets and six for the cube map texture targets) and their number. Each
array has associated with it a width, height (two- and three-dimensional and cube-
map only), and depth (three-dimensional only), a border width, an integer describ-
ing the internal format of the image, six integer values describing the resolutions
of each of the red, green, blue, alpha, luminance, and intensity components of the
image, a boolean describing whether the image is compressed or not, and an in-
teger size of a compressed image. Each initial texture array is null (zero width,
height, and depth, zero border width, internal formatvith the compressed flag

set toFALSE, a zero compressed size, and zero-sized components). Next, there
are the two sets of texture properties; each consists of the selected minification
and magnification filters, the wrap modes fart (two- and three-dimensional

and cubemap only), andthree-dimensional only), tHEEXTUREBORDERCOLOR

two integers describing the minimum and maximum level of detail, two inte-
gers describing the base and maximum mipmap array, a boolean flag indicat-
ing whether the texture is resident, three integers descripting the depth texture
mode, compare mode, and compare function, and the priority associated with each
set of properties. The value of the resident flag is determined by the GL and
may change as a result of other GL operations. The flag may only be queried,
not set, by applications (see sectidr8.19. In the initial state, the value as-
signed tOTEXTUREMIN_FILTER is NEARESTMIPMAPLINEAR, and the value for
TEXTUREMAGFILTER is LINEAR. s, t, andr wrap modes are all set REPEAT

The values off EXTUREMIN_LODand TEXTUREMAXLODare -1000 and 1000 re-
spectively. The values GFEXTUREBASELEVEL andTEXTUREMAXLEVEL are 0

and 1000 respectiveFTEXTUREPRIORITY is 1.0, andTEXTUREBORDERCOLOR

is (0,0,0,0). The values EPTHTEXTUREMODETEXTURECOMPAREIODE

and TEXTURECOMPARIEUNCare LUMINANCE NONE and LEQUALrespectively.

The initial value of TEXTURERESIDENTIs determined by the GL.

In addition to the one-, two-, and three-dimensional and the six cube map sets
of image arrays, the partially instantiated one-, two-, and three-dimensional and
one cube map set of proxy image arrays are maintained. Each proxy array includes
width, height (two- and three-dimensional arrays only), depth (three-dimensional
arrays only), border width, and internal format state values, as well as state for
the red, green, blue, alpha, luminance, and intensity component resolutions. Proxy
arrays do not include image data, nor do they include texture properties. When
TexImage3Dis executed withiarget specified a®ROXYTEXTURESD, the three-
dimensional proxy state values of the specified level-of-detail are recomputed and

Version 1.4 - July 24, 2002

3.8. TEXTURING 149

updated. If the image array would not be supported®yimage3Dcalled with
targetset toTEXTURES3D, no error is generated, but the proxy width, height, depth,
border width, and component resolutions are set to zero. If the image array would
be supported by such a call Teximage3D, the proxy state values are set exactly

as though the actual image array were being specified. No pixel data are transferred
or processed in either case.

One- and two-dimensional proxy arrays are operated on in the same way when
TexIimagelDis executed withargetspecified aPROXYTEXTURELD, or TexIm-
age2Dis executed withargetspecified aPROXYTEXTUREZ2D.

The cube map proxy arrays are operated on in the same mannefTexiem
age2Dis executed with theéargetfield specified aPROXYTEXTURECUBEMAR
with the addition that determining that a given cube map texture is supported with
PROXYTEXTURECUBEMAPIndicates that all six of the cube map 2D images are
supported. Likewise, if the specififtdROXYTEXTURECUBEMAPIS not supported,
none of the six cube map 2D images are supported.

There is no image associated with any of the proxy textures. There-
fore PROXYTEXTURELD, PROXYTEXTURE2D, and PROXYTEXTURE3D, and
PROXYTEXTURECUBEMAP cannot be used as textures, and their images must
never be queried usinGetTexlmage The errorINVALID _ENUMs generated if
this is attempted. Likewise, there is no non level-related state associated with a
proxy texture, andetTexParameterivor GetTexParameterfvmay not be called
with a proxy texturetarget The errorINVALID _ENUMSs generated if this is at-
tempted.

3.8.12 Texture Objects

In addition to the default textureBEXTURELD, TEXTURE2D, TEXTURE3D, and
TEXTURECUBEMAR named one-, two-, and three-dimensional and cube map tex-
ture objects can be created and operated upon. The name space for texture objects
is the unsigned integers, with zero reserved by the GL.

A texture object is created bkinding an unused name tOEXTURELD,
TEXTURE2D, TEXTURE3D, or TEXTURECUBEMAPR The binding is effected by
calling

void BindTexture(enumtarget uint texture);
with target set to the desired texture target atacttureset to the unused name.
The resulting texture object is a new state vector, comprising all the state values

listed in sectior3.8.1], set to the same initial values. If the new texture object is
bound toTEXTURELD, TEXTURE2D, TEXTURE3D, or TEXTURECUBEMAR it is

Version 1.4 - July 24, 2002

150 CHAPTER 3. RASTERIZATION

and remains a one-, two-, three-dimensional, or cube map texture respectively until
it is deleted.

BindTexture may also be used to bind an existing texture object to ei-
ther TEXTURELD, TEXTURE2D, TEXTURE3D, or TEXTURECUBEMAR The error
INVALID _OPERATIONs generated if an attempt is made to bind a texture object
of different dimensionality than the specifitatget If the bind is successful no
change is made to the state of the bound texture object, and any previous binding
to targetis broken.

While a texture object is bound, GL operations on the target to which it is
bound affect the bound object, and queries of the target to which it is bound return
state from the bound object. If texture mapping of the dimensionality of the target
to which a texture object is bound is enabled, the state of the bound texture object
directs the texturing operation.

In the initial state, TEXTURELD, TEXTURE2D, TEXTURES3D,
and TEXTURECUBEMAPhave one-, two-, three-dimensional, and cube map tex-
ture state vectors respectively associated with them. In order that access to these
initial textures not be lost, they are treated as texture objects all of whose names
are 0. The initial one-, two-, three-dimensional, and cube map texture is therefore
operated upon, queried, and appliedr&@TURELD, TEXTURE2D, TEXTURES3D,
or TEXTURECUBEMAPrespectively while 0 is bound to the corresponding targets.

Texture objects are deleted by calling

void DeleteTextureg sizei n, uint *textures);

texturescontainsn names of texture objects to be deleted. After a texture object
is deleted, it has no contents or dimensionality, and its name is again unused. If
a texture that is currently bound to one of the targeiX TURELD, TEXTUREZ2D,
TEXTURE3D, or TEXTURECUBEMAPIs deleted, it is as thougBindTexture had
been executed with the sartagetandtexturezero. Unused names faxturesare
silently ignored, as is the value zero.

The command

void GenTextureq sizei n, uint *textures);

returnsn previously unused texture object namestémtures These names are
marked as used, for the purposesG#nTexturesonly, but they acquire texture
state and a dimensionality only when they are first bound, just as if they were
unused.

An implementation may choose to establish a working set of texture objects on
which binding operations are performed with higher performance. A texture object
that is currently part of the working set is said torbsident The command

Version 1.4 - July 24, 2002

3.8. TEXTURING 151

boolean AreTexturesResident sizei n, uint *textures
boolean *residences;

returnsTRUEIf all of the n texture objects named bexturesare resident, or if the
implementation does not distinguish a working set. If at least one of the texture
objects named itextureds not resident, theRALSEIs returned, and the residence

of each texture object is returned iiesidences Otherwise the contents oési-
dencesare not changed. If any of the namestéxturesare unused or are zero,
FALSEIs returned, the errdNVALID _VALUEIs generated, and the contentgex-
idencesare indeterminate. The residence status of a single bound texture object
can also be queried by callifgetTexParameterivor GetTexParameterfvwith

target set to the target to which the texture object is bound, mmgne set to
TEXTURERESIDENT.

AreTexturesResidentindicates only whether a texture object is currently resi-
dent, not whether it could not be made resident. An implementation may choose to
make a texture object resident only on first use, for example. The client may guide
the GL implementation in determining which texture objects should be resident by
specifying a priority for each texture object. The command

void PrioritizeTextures(sizei n, uint *textures
clampf *priorities);

sets the priorities of the texture objects named texturesto the values irpriori-

ties Each priority value is clamped to the range [0,1] before it is assigned. Zero in-
dicates the lowest priority, with the least likelihood of being resident. One indicates
the highest priority, with the greatest likelihood of being resident. The priority of a
single bound texture object may also be changed by calixdParameteri, Tex-
Parameterf, TexParameteriv, or TexParameterfvwith target set to the target to
which the texture object is boungipame set toTEXTUREPRIORITY, andparam

or params specifying the new priority value (which is clamped to the range [0,1]
before being assignedprioritizeTextures silently ignores attempts to prioritize
unused texture object names or zero (default textures).

The texture object name space, including the initial one-, two-, and three-
dimensional texture objects, is shared among all texture units. A texture object
may be bound to more than one texture unit simultaneously. After a texture object
is bound, any GL operations on that target object affect any other texture units to
which the same texture object is bound.

Texture binding is affected by the setting of the staBT IVE_TEXTURE

If a texture object is deleted, it as if all texture units which are bound to that
texture object are rebound to texture object zero.

Version 1.4 - July 24, 2002

152 CHAPTER 3. RASTERIZATION

3.8.13 Texture Environments and Texture Functions

The command

void TexEnv{if }(enumtarget enum pnameT param);
void TexEnv{if }v(enumtarget enum pnameT params);

sets parameters of thtexture environmenthat specifies how texture values are
interpreted when texturing a fragment, or sets per-texture-unit filtering parameters.

target must be one ofEXTUREENV or TEXTUREFILTER _.CONTROLpname
is a symbolic constant indicating the parameter to be set. In the first form of the
commandparamis a value to which to set a single-valued parameter; in the sec-
ond form,paramsis a pointer to an array of parameters: either a single symbolic
constant or a value or group of values to which the parameter should be set.

When target is TEXTUREFILTER_CONTROL pname must be
TEXTURELODBIAS. In this case the parameter is a single signed floating
point value texunity;,s, that biases the level of detail parameteas described in
section3.8.8

When target is TEXTUREENV, the possible environment parame-
ters are TEXTUREENVMODE TEXTUREENV.COLOR COMBINERGB and
COMBINEALPHA TEXTUREENVMODE may be set to one ofREPLACE
MODULATE DECAL BLENDQ ADO or COMBINE TEXTUREENV.COLORIis set
to an RGBA color by providing four single-precision floating-point values in the
range[0, 1] (values outside this range are clamped to it). If integers are provided
for TEXTUREENV.COLORthen they are converted to floating-point as specified in
table2.6for signed integers.

The value of TEXTUREENV.MODEspecifies a@exture function The result of
this function depends on the fragment and the texture array value. The precise
form of the function depends on the base internal formats of the texture arrays that
were last specified.

C¢ and A° are the primary color components of the incoming fragméht;
and A, are the components of the texture source color, derived from the filtered
texture valuesi;, Gy, B, As, Ly, and; as shown in tabl8.21;, C. and A. are
the components of the texture environment cotdy;and A, are the components
resulting from the previous texture environment (for texture environmefif @nd
A, are identical taC'y and Ay, respectively); and’, and A, are the primary color
components computed by the texture function.

3In the remainder of sectidh8.13 the notatiorC,, is used to denote each of the three components
R., G, and B, of a color specified by. Operations o, are performed independently for each
color component. Thel component of colors is usually operated on in a different fashion, and is
therefore denoted separately Hy.

Version 1.4 - July 24, 2002

3.8. TEXTURING 153

Texture Base Texture source colof
Internal Format Cs Ay
ALPHA (0,0,0) A,
LUMINANCE (Ly, Ly, Ly) 1
LUMINANCEALPHA | (L, Ly, Ly) | Ay
INTENSITY (Iy, Iy, 1) I
RGB (Rt, Gt, Bt) 1
RGBA (Rt, Gt, Bt) At

Table 3.21: Correspondence of filtered texture components to texture source com-
ponents.

All of these color values are in the ranffe 1]. The texture functions are spec-
ified in tables3.22 3.23 and3.24

If the value of TEXTUREENV.MODHSs COMBINE the form of the texture func-
tion depends on the values GOMBINERGBand COMBINEALPHA according to
table 3.24 The RGBand ALPHAresults of the texture function are then muilti-
plied by the values cRGBSCALEandALPHASCALE respectively. The results are
clamped tdo, 1].

The argumentsdrg0, Argl, and Arg2 are determined by the values of
SOURCE_RGB SOURCE ALPHA OPERAND.RGBand OPERAND.ALPHA where
n =0, 1, or 2, as shown in tabl&25and 3.26 C,” andA," denote the texture
source color and alpha from the texture image bound to texturewunit

The state required for the current texture environment, for each texture unit,
consists of a six-valued integer indicating the texture function, an eight-valued in-
teger indicating th&@GBcombiner function and a six-valued integer indicating the
ALPHAcombiner function, six four-valued integers indicating the combR@eB
and ALPHAsource arguments, three four-valued integers indicating the combiner
RGBoperands, three two-valued integers indicating the comBibeHAoperands,
and four floating-point environment color values. In the initial state, the texture
and combiner functions are eal©DULATRhe combineRGBandALPHAsources
are eaCITEXTUREPREVIOUS andCONSTANTor sources 0, 1, and 2 respectively,
the combineRGBoperands for sources 0 and 1 are eaRIECOLORthe combiner
RGBoperand for source 2, as well as for the combisePHAoOperands, are each
SRCALPHA and the environment color {8, 0,0, 0).

The state required for the texture filtering parameters, for each texture unit,
consists of a single floating-point level of detail bias. The initial value of the bias
is 0.0.

Version 1.4 - July 24, 2002

154

CHAPTER 3. RASTERIZATION

Texture Base REPLACE| MODULATE | DECAL
Internal Format Function | Function Function
ALPHA C,=Cf | C, =0y undefined
Ay =As | Ay = AsA,
LUMINANCE C,=0Cs | Cy, =C¢Cs | undefined
(or l) Av:Af Av—Af
LUMINANCEALPHA | C, = Cs | C, = C;Cy | undefined
(or 2) Ay =As | Ay = AsA;
INTENSITY C,=0Cs | Cy, =C¢Cs | undefined
Ay, =A; | Ay = AfA,
RGB C,=0Cs | C, =005 | Cp = Cy
(or 3) Ay, =Af | Ay = Ay A, = Ay
RGBA Co=Cs | C,=CsCs | Cy=Cp(1 — As) + Cs A,
(or 4) Ay =As | Ay =ArA, | Ay = Af

Table 3.22: Texture functiorBEPLACEMODULATEaNdDECAL

Texture Base BLEND ADD
Internal Format Function Function
ALPHA C, = Cf C, = Cf

Ay, = AfA; Ay = ApA;
LUMINANCE Cy,=C¢(1—-Cs)+C.Cs | Cpy=Cs+Cs
(or 1) AU:Af AU:Af
LUMINANCEALPHA | C, = Cf(l - C’S) +C.Cs | Cy = Cf + C;
(or 2) Ay = AfA; Ay = AfA,
INTENSITY C,=Ci(1-C5)+CCs | Cy=Cy+Cs

Ay =Ap(1—As)+ AcAs | Ay = Ap+ A,
RGB Co=Cr(1-C5)+CCs | C, =C5+Cs
(0r3) AU:Af AU:Af
RGBA Co=Ct(1-Cs)+CCs | C, =Cs+Cs
(or 4) A, = ApA; A, = ApA;

Table 3.23: Texture functiorBLENDandADD

Version 1.4 - July 24, 2002

3.8. TEXTURING

COMBINERGB | Texture Function

REPLACE Arg0
MODULATE Arg0 x Argl
ADD Arg0 + Argl
ADDSIGNED | Arg0+ Argl —0.5
INTERPOLATE | Arg0 * Arg2 4+ Argl = (1 — Arg2)
SUBTRACT Arg0 — Argl
DOT3RGB x ((Arg0, — 0.5) x (Argl, — 0.5)+
(Arg0g — 0.5) * (Argly — 0.5)+
(Arg0p — 0.5) * (Argl, — 0.5))
DOT3RGBA X ((Arg0, — 0.5) x (Argl, — 0.5)+
(Arg0y — 0. 5) (Argl, — 0. 5)—|—
(Arg0, — 0.5) * (Argl, —0.5))

COMBINEALPHA\ Texture Function

REPLACE Arg0

MODULATE Arg0 = Argl

ADD Arg0 + Argl

ADDSIGNED Arg0+ Argl — 0.5
INTERPOLATE | Arg0* Arg2 + Argl x (1 — Arg2)
SUBTRACT Arg0 — Argl

155

Table 3.24:COMBINEtexture functions. The scalar expression computed for the
DOT3RGBandDOT3RGBAfunctions is placed into each of theB&B or 4 (RGBA
components of the output. The result generated fG@MBINEALPHAIS ignored

for DOT3RGBA

Version 1.4 - July 24, 2002

156 CHAPTER 3. RASTERIZATION

SOURCERGB | OPERAND.RGB | Argument |

TEXTURE SRCCOLOR Cs
ONEMINUSSRCCOLOR| 1 — C,
SRCALPHA A,
ONEMINUSSRCALPHA | 1 — A,
TEXTURE SRCCOLOR "
ONEMINUSSRCCOLOR)| 1 — C,"
SRCALPHA A"
ONEMINUSSRCALPHA | 1 — A"
CONSTANT SRCCOLOR C.
ONEMINUSSRCCOLOR| 1 — C.
SRCALPHA Ac
ONEMINUSSRCALPHA | 1 — A,
PRIMARYCOLOR| SRCCOLOR Cy
ONEMINUSSRCCOLOR| 1 — C}
SRCALPHA Ap
ONEMINUSSRCALPHA | 1 — A;
PREVIOUS SRCCOLOR C,
ONEMINUSSRCCOLOR| 1 — G,
SRCALPHA A,
ONEMINUSSRCALPHA | 1 — A4,

Table 3.25: Arguments fatOMBINERGBfunctions.

| SOURCE_ALPHA | OPERAND.ALPHA | Argument |
TEXTURE SRCALPHA Aq
ONEMINUSSRCALPHA | 1 — A
TEXTURE SRCALPHA A"
ONEMINUSSRCALPHA | 1 — A"
CONSTANT SRCALPHA Ac
ONEMINUSSRCALPHA | 1— A,
PRIMARYCOLOR| SRCALPHA Af
ONEMINUSSRCALPHA | 1 — Ay
PREVIOUS SRCALPHA Ay
ONEMINUSSRCALPHA| 1 — A4,

Table 3.26: Arguments fatOMBINEALPHAfunctions.

Version 1.4 - July 24, 2002

3.8. TEXTURING 157

3.8.14 Texture Comparison Modes

Texture values can also be computed according to a specified comparison func-
tion. Texture parameteTEXTURECOMPARBIODESpecifies the comparison
operands, and paramelEXTURECOMPARIEUNCspecifies the comparison func-
tion. The format of the resulting texture sample is determined by the value of
DEPTHTEXTUREMODE

Depth Texture Comparison Mode

If the currently bound texture’s base internal formaDEEPTHCOMPONENThen
TEXTURECOMPARBMODETEXTURECOMPAREUNCandDEPTHTEXTUREMODE
control the output of the texture unit as described below. Otherwise, the texture
unit operates in the normal manner and texture comparison is bypassed.

Let D, be the depth texture value, in the rarigel], andR be the interpolated
texture coordinate clamped to the rarigel]. Then the effective texture valug,
I;, or A; is computed as follows:

If the value of TEXTURECOMPARBMODES NONEthen

’I”:Dt

Otherwise (the value of TEXTURECOMPARBODE is
COMPARR TO.TEXTURE:
If the value OfTEXTURECOMPAREUNCIs LEQUAL, then

{10, R<D,
o 00, R>Dt

If the value of TEXTURECOMPAREUNCIis GEQUALthen

{10, R>D,
—) 00, R<D

The resulting » is assigned tolL;, I;, or A; if the value of
DEPTHTEXTUREMODES respective L UMINANCEINTENSITY , or ALPHA

If the value of TEXTUREMAGFILTER is not NEAREST or the value of
TEXTUREMIN_FILTER is not NEARESTor NEARESTMIPMAPNEAREST thenr
may be computed by comparing more than one depth texture value to the texture
R coordinate. The details of this are implementation-dependent, shauld be a
value in the rang@, 1] which is proportional to the number of comparison passes
or failures.

Version 1.4 - July 24, 2002

158 CHAPTER 3. RASTERIZATION

3.8.15 Texture Application

Texturing is enabled or disabled using the gend&fiwable and Disable com-
mands, respectively, with the symbolic constam&XTURELD, TEXTURE2D,
TEXTURESD, or TEXTURECUBEMAPto enable the one-, two-, three-dimensional,

or cube map texture, respectively. If both two- and one-dimensional textures are
enabled, the two-dimensional texture is used. If the three-dimensional and either
of the two- or one-dimensional textures is enabled, the three-dimensional texture
is used. If the cube map texture and any of the three-, two-, or one-dimensional
textures is enabled, then cube map texturing is used. If all texturing is disabled, a
rasterized fragment is passed on unaltered to the next stage of the GL (although its
texture coordinates may be discarded). Otherwise, a texture value is found accord-
ing to the parameter values of the currently bound texture image of the appropriate
dimensionality using the rules given in sectidh8.6through3.8.9 This texture

value is used along with the incoming fragment in computing the texture function
indicated by the currently bound texture environment. The result of this function
replaces the incoming fragment’s primary R, G, B, and A values. These are the
color values passed to subsequent operations. Other data associated with the in-
coming fragment remain unchanged, except that the texture coordinates may be
discarded.

Each texture unit is enabled and bound to texture objects independently from
the other texture units. Each texture unit follows the precedence rules for one-, two-
, three-dimensional, and cube map textures. Thus texture units can be performing
texture mapping of different dimensionalities simultaneously. Each unit has its
own enable and binding states.

Each texture unit is paired with an environment function, as shown in fig-
ure 3.11 The second texture function is computed using the texture value from
the second texture, the fragment resulting from the first texture function computa-
tion and the second texture unit's environment function. If there is a third texture,
the fragment resulting from the second texture function is combined with the third
texture value using the third texture unit's environment function and so on. The tex-
ture unit selected byActiveTexture determines which texture unit's environment
is modified byTexEnv calls.

If the value of TEXTUREENV MODHEs COMBINEthe texture function associated
with a given texture unit is computed using the values specifiesldlyRCE_RGB
SOURCE ALPHA OPERAND RGBandOPERAND ALPHA If TEXTURE is spec-
ified asSOURCE_RGBor SOURCE ALPHA the texture value from texture urmit
will be used in computing the texture function for this texture unit.

Texturing is enabled and disabled individually for each texture unit. If texturing
is disabled for one of the units, then the fragment resulting from the previous unit

Version 1.4 - July 24, 2002

3.8. TEXTURING

159

Cs

o ; * * *
TE,
CTo—m TE,
cT, TE, |
CT2 TE
CT, -

=fragment primary color input to texturing

TE; = texture environment i

C'; =fragment color output from texturing

CT; =texture color from texture lookup i

Figure 3.11. Multitexture pipeline. Four texture units are shown; however, multi-
texturing may support a different number of units depending on the implementation.
The input fragment color is successively combined with each texture according to
the state of the corresponding texture environment, and the resulting fragment|color
passed as input to the next texture unit in the pipeline.

is passed unaltered to the following unit.

If a texture unit is disabled or has an invalid or incomplete texture (as defined
in section3.8.10 bound to it, then blending is disabled for that texture unit. If the
texture environment for a given enabled texture unit references a disabled texture
unit, or an invalid or incomplete texture that is bound to another unit, then the

results of texture blending are undefined.

The required state, per texture unit, is four bits indicating whether each of one-,
two-, three-dimensional, or cube map texturing is enabled or disabled. In the intial
state, all texturing is disabled for all texture units.

Version 1.4 - July 24, 2002

160 CHAPTER 3. RASTERIZATION

3.9 Color Sum

At the beginning of color sum, a fragment has two RGBA colors: a primary color
c,ri (Which texturing, if enabled, may have modified) and a secondary cglar

If color sum is enabled, the R, G, and B components of these two colors are
summed to produce a single post-texturing RGBA celofhe A component of
is taken from the A component ef,,;; the A component ot,.. is unused. The
components o are then clamped to the ranf§e1]. If color sum is disabled, then
c,ri IS assigned te.

Color sum is enabled or disabled using the genEriable andDisable com-
mands, respectively, with the symbolic const@aai.ORSUM If lighting is enabled
the color sum stage is always applied, ignoring the value@{ORSUM

The state required is a single bit indicating whether color sum is enabled or
disabled. In the initial state, color sum is disabled.

Color sum has no effect in color index mode.

3.10 Fog

If enabled, fog blends a fog color with a rasterized fragment’s post-texturing color
using a blending factof. Fog is enabled and disabled with tBeable andDisable
commands using the symbolic constantG

This factorf is computed according to one of three equations:

f=exp(—d-c), (3.26)
f =exp(—(d-c)?),or (3.27)
f= Z:E (3.28)

If the fog source, as defined below, BFRAGMENDEPTH thenc is the eye-
coordinate distance from the ey@), 0,0, 1) in eye coordinates, to the fragment
center. If the fog source IBOGCOORDINATEthenc is the interpolated value of

the fog coordinate for this fragment. The equation and the fog source, along with
eitherd or e ands, is specified with

void Fog{if}(enumpnameT param);
void Fog{if }v(enumpnameT params);

Version 1.4 - July 24, 2002

3.10. FOG 161

If pnameis FOGMODE then param must be, orparamsmust point to an in-
teger that is one of the symbolic constasP, EXP2, or LINEAR, in which
case equatior3.26 3.27, or 3.28 respectively, is selected for the fog calcula-
tion (if, when 3.28 is selectede = s, results are undefined). ffnameis
FOGCOORDINATESOURCEthenparammust be, oparamsmust point to an inte-
ger that is one of the symbolic constaRRAGMENDEPTHor FOGCOORDINATE

If pnameis FOGDENSITY, FOGSTART, or FOGEND then paramis or params
points to a value that i, s, or e, respectively. Ifd is specified less than zero, the
errorINVALID _VALUEresults.

An implementation may choose to approximate the eye-coordinate distance
from the eye to each fragment center|by|. Further,f need not be computed at
each fragment, but may be computed at each vertex and interpolated as other data
are.

No matter which equation and approximation is used to computiee result
is clamped td0, 1] to obtain the finalf.

f is used differently depending on whether the GL is in RGBA or color index
mode. In RGBA mode, it”,. represents a rasterized fragment’s R, G, or B value,
then the corresponding value produced by fog is

C = fC.+(1— f)Cy.

(The rasterized fragment’s A value is not changed by fog blending.) The R, G, B,
and A values ot”; are specified by callinfog with pnameequal toFOGCOLOR
in this caseparamspoints to four values comprising. If these are not floating-
point values, then they are converted to floating-point using the conversion given
in table2.6 for signed integers. Each component(®f is clamped td0, 1] when
specified.

In color index mode, the formula for fog blending is

I=i.+(1—f)ig

where i, is the rasterized fragment's color index apgis a single-precision
floating-point value. (1 — f)i; is rounded to the nearest fixed-point value with
the same number of bits to the right of the binary point,asnd the integer por-
tion of I is masked (bitwise ANDed) with™ — 1, wheren is the number of bits in
a color in the color index buffer (buffers are discussed in chaf)tefhe value of
ir is set by calling-og with pnameset toFOGINDEX andparambeing orparams
pointing to a single value for the fog index. The integer pari,of masked with
2" — 1.

The state required for fog consists of a three valued integer to select the fog
equation, three floating-point valués e, and s, an RGBA fog color and a fog

Version 1.4 - July 24, 2002

162 CHAPTER 3. RASTERIZATION

color index, a two-valued integer to select the fog coordinate source, and a single
bit to indicate whether or not fog is enabled. In the initial state, fog is disabled,
FOGCOORDINATESOURCHs FRAGMENDEPTH FOGMODHS EXP, d = 1.0, ¢ =

1.0, ands = 0.0; Cy = (0,0,0,0) andis = 0.

3.11 Antialiasing Application

Finally, if antialiasing is enabled for the primitive from which a rasterized fragment
was produced, then the computed coverage value is applied to the fragment. In
RGBA mode, the value is multiplied by the fragment’s alpha (A) value to yield a
final alpha value. In color index mode, the value is used to set the low order bits of
the color index value as described in sectioh

3.12 Multisample Point Fade

If multisampling is enabled and the rasterized fragment results from a point primi-
tive, then the computed fade factor from equafiohis applied to the fragment. In
RGBA mode, the fade factor is multiplied by the fragment’s alpha value to yield a
final alpha value. In color index mode, the fade factor has no effect.

Version 1.4 - July 24, 2002

Chapter 4

Per-Fragment Operations and the
Framebuffer

The framebuffer consists of a set of pixels arranged as a two-dimensional array.
The height and width of this array may vary from one GL implementation to an-
other. For purposes of this discussion, each pixel in the framebuffer is simply a set
of some number of bits. The number of bits per pixel may also vary depending on
the particular GL implementation or context.

Corresponding bits from each pixel in the framebuffer are grouped together
into abitplane each bitplane contains a single bit from each pixel. These bitplanes
are grouped into severddgical buffers These are theolor, depth stencil and
accumulationbuffers. The color buffer actually consists of a number of buffers:
thefront left buffer, thefront right buffer, theback leftbuffer, theback rightbuffer,
and some number @uxiliary buffers. Typically the contents of the front buffers
are displayed on a color monitor while the contents of the back buffers are invisi-
ble. (Monoscopic contexts display only the front left buffer; stereoscopic contexts
display both the front left and the front right buffers.) The contents of the aux-
iliary buffers are never visible. All color buffers must have the same number of
bitplanes, although an implementation or context may choose not to provide right
buffers, back buffers, or auxiliary buffers at all. Further, an implementation or
context may not provide depth, stencil, or accumulation buffers.

Color buffers consist of either unsigned integer color indices or R, G, B, and,
optionally, A unsigned integer values. The number of bitplanes in each of the color
buffers, the depth buffer, the stencil buffer, and the accumulation buffer is fixed and
window dependent. If an accumulation buffer is provided, it must have at least as
many bitplanes per R, G, and B color component as do the color buffers.

The initial state of all provided bitplanes is undefined.

163

164 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

Fragment Pixel . Alpha
Scissor
+ — Ownership — — Test
Associated Test Test (RGBA Only)

Data

Depth buffer < Stencil - ———————
Test Test

Framebuffer J Framebuffer J

p-| Blending | gy Dithering [~ Logicop [—= o
(RGBA Only) Framebuffer

Il Il

Framebuffer Framebuffer

Figure 4.1. Per-fragment operations.

4.1 Per-Fragment Operations

A fragment produced by rasterization with window coordinate&gf, v,,) mod-

ifies the pixel in the framebuffer at that location based on a number of parame-
ters and conditions. We describe these modifications and tests, diagrammed in
Figure4.1, in the order in which they are performed. Figurd diagrams these
modifications and tests.

4.1.1 Pixel Ownership Test

The first test is to determine if the pixel at location,, y,,) in the framebuffer

is currently owned by the GL (more precisely, by this GL context). If it is not,

the window system decides the fate the incoming fragment. Possible results are
that the fragment is discarded or that some subset of the subsequent per-fragment
operations are applied to the fragment. This test allows the window system to
control the GL's behavior, for instance, when a GL window is obscured.

Version 1.4 - July 24, 2002

4.1. PER-FRAGMENT OPERATIONS 165

4.1.2 Scissor Test

The scissor test determineqif,,, y,,) lies within the scissor rectangle defined by
four values. These values are set with

void Scissofint left, int bottom sizei width,
sizei height);

If left < x,, < left+ width andbottom< y,, < bottom+ height then the scissor

test passes. Otherwise, the test fails and the fragment is discarded. The test is
enabled or disabled usirignable or Disable using the constar8CISSORTEST.

When disabled, it is as if the scissor test always passes. If aitiokin or height

is less than zero, then the eridlVALID VALUEIs generated. The state required
consists of four integer values and a bit indicating whether the test is enabled or
disabled. In the initial stat ft = bottom = 0; width andheight are determined

by the size of the GL window. Initially, the scissor test is disabled.

4.1.3 Multisample Fragment Operations

This step modifies fragment alpha and coverage values based on the values
of SAMPLEALPHATO.COVERAGESAMPLEALPHATO.ONE SAMPLECOVERAGE
SAMPLECOVERAGKALUE andSAMPLECOVERAGENVERT. No changes to the
fragment alpha or coverage values are made at this stapliffiISAMPLEIs dis-
abled, or ifSAMPLEBUFFERSSs not a value of one.

SAMPLEALPHATO COVERAGE
SAMPLEALPHATO ONE andSAMPLECOVERAGAHTre enabled and disabled by call-
ing Enable and Disable with cap specified as one of the three token values. All
three values are queried by callilgEnabled with cap set to the desired token
value. If SAMPLEALPHATO.COVERAGIHS enabled, a temporary coverage value
is generated where each bit is determined by the alpha value at the corresponding
sample location. The temporary coverage value is then ANDed with the fragment
coverage value. Otherwise the fragment coverage value is unchanged at this point.

No specific algorithm is required for converting the sample alpha values to a
temporary coverage value. It is intended that the number of 1's in the temporary
coverage be proportional to the set of alpha values for the fragment, with all 1's
corresponding to the maximum of all alpha values, and all 0’s corresponding to
all alpha values being 0. It is also intended that the algorithm be pseudo-random
in nature, to avoid image artifacts due to regular coverage sample locations. The
algorithm can and probably should be different at different pixel locations. If it
does differ, it should be defined relative to window, not screen, coordinates, so that
rendering results are invariant with respect to window position.

Version 1.4 - July 24, 2002

166 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

Next, if SAMPLEALPHATO.ONEis enabled, each alpha value is replaced by the
maximum representable alpha value. Otherwise, the alpha values are not changed.

Finally, if SAMPLECOVERAGES enabled, the fragment coverage is ANDed
with another temporary coverage. This temporary coverage is generated
in the same manner as the one described above, but as a function of
the value of SAMPLECOVERAGKALUE The function need not be identical,
but it must have the same properties of proportionality and invariance. If
SAMPLECOVERAGHNVERT is TRUE the temporary coverage is inverted (all bit
values are inverted) before it is ANDed with the fragment coverage.

The values ofSAMPLECOVERAGKALUE and SAMPLECOVERAGHENVERT
are specified by calling

void SampleCoveragéclampf valug boolean invert);

with value set to the desired coverage value, amekert set toTRUEOr FALSE

value is clamped to [0,1] before being stored 88MPLECOVERAGKALUE

SAMPLECOVERAGRE/ALUE is queried by callingGetFloatv with pnameset to
SAMPLECOVERAGKALUE SAMPLECOVERAGHENVERT is queried by calling
GetBooleanvwith pnameset toSAMPLECOVERAGHENVERT.

4.1.4 Alpha Test

This step applies only in RGBA mode. In color index mode, proceed to the next
operation. The alpha test discards a fragment conditional on the outcome of a
comparison between the incoming fragment’s alpha value and a constant value.
The comparison is enabled or disabled with the gertenigble andDisable com-
mands using the symbolic constakitPHATEST. When disabled, it is as if the
comparison always passes. The test is controlled with

void AlphaFunc(enumfung clampf ref);

funcis a symbolic constant indicating the alpha test functief;is a reference
value. ref is clamped to lie in0, 1], and then converted to a fixed-point value ac-
cording to the rules given for an A component in sectitbh3.9 For purposes

of the alpha test, the fragment’s alpha value is also rounded to the nearest inte-
ger. The possible constants specifying the test functioNBKERALWAYSLESS,
LEQUAL EQUAL GEQUAL GREATERoOr NOTEQUALMeaning pass the fragment
never, always, if the fragment’s alpha value is less than, less than or equal to, equal
to, greater than or equal to, greater than, or not equal to the reference value, respec-
tively.

Version 1.4 - July 24, 2002

4.1. PER-FRAGMENT OPERATIONS 167

The required state consists of the floating-point reference value, an eight-
valued integer indicating the comparison function, and a bit indicating if the com-
parison is enabled or disabled. The initial state is for the reference valuetto be
and the function to baLWAYSInitially, the alpha test is disabled.

415 Stencil Test

The stencil test conditionally discards a fragment based on the outcome of a com-
parison between the value in the stencil buffer at locatian v.,) and a reference
value. The test is controlled with

void StencilFung enumfuncg int ref, uint mask);
void StencilOp(enum sfail, enum dpfail, enum dppass);

The test is enabled or disabled with tBrable andDisable commands, using the
symbolic constanSTENCIL_TEST. When disabled, the stencil test and associated
modifications are not made, and the fragment is always passed.

refis an integer reference value that is used in the unsigned stencil comparison.
It is clamped to the rang®, 2° — 1], wheres is the number of bits in the stencil
buffer. funcis a symbolic constant that determines the stencil comparison function;
the eight symbolic constants 2MEVERALWAYSLESS, LEQUAL EQUAL GEQUAL
GREATERoOr NOTEQUALAccordingly, the stencil test passes never, always, if the
reference value is less than, less than or equal to, equal to, greater than or equal to,
greater than, or not equal to the masked stored value in the stencil bufferl&dw
significant bits ofmaskare bitwise ANDed with both the reference and the stored
stencil value. The ANDed values are those that participate in the comparison.

StencilOptakes three arguments that indicate what happens to the stored sten-
cil value if this or certain subsequent tests fail or padail indicates what action
is taken if the stencil test fails. The symbolic constants&eP, ZERQ REPLACE
INCR, DECR INVERT, INCR_.WRAPandDECRWRAPThese correspond to keeping
the current value, setting to zero, replacing with the reference value, incrementing
with saturation, decrementing with saturation, bitwise inverting it, incrementing
without saturation, and decrementing without saturation.

For purposes of increment and decrement, the stencil bits are considered as an
unsigned integer. Incrementing or decrementing with saturation clamps the stencil
value at0 and the maximum representable value. Incrementing or decrementing
without saturation will wrap such that incrementing the maximum representable
value results i), and decrementingresults in the maximum representable value.

The same symbolic values are given to indicate the stencil action if the depth
buffer test (below) failsdpfail), or if it passesdppas3.

Version 1.4 - July 24, 2002

168 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

If the stencil test fails, the incoming fragment is discarded. The state required
consists of the most recent values passe&tancilFunc and StencilOp, and a
bit indicating whether stencil testing is enabled or disabled. In the initial state,
stenciling is disabled, the stencil reference value is zero, the stencil comparison
function isALWAYSand the stencimaskis all ones. Initially, all three stencil
operations ar&EEP If there is no stencil buffer, no stencil modification can occur,
and it is as if the stencil tests always pass, regardless of any c&tsnailOp.

4.1.6 Depth Buffer Test

The depth buffer test discards the incoming fragment if a depth comparison fails.
The comparison is enabled or disabled with the gertenigble andDisable com-

mands using the symbolic constadEPTHTEST. When disabled, the depth com-
parison and subsequent possible updates to the depth buffer value are bypassed and
the fragment is passed to the next operation. The stencil value, however, is modi-
fied as indicated below as if the depth buffer test passed. If enabled, the comparison
takes place and the depth buffer and stencil value may subsequently be modified.

The comparison is specified with

void DepthFung(enumfunc);

This command takes a single symbolic constant. onsEfER ALWAYSLESS,
LEQUAL EQUAL GREATERGEQUAL NOTEQUALAccordingly, the depth buffer

test passes never, always, if the incoming fragment'ssalue is less than, less
than or equal to, equal to, greater than, greater than or equal to, or not equal to
the depth value stored at the location given by the incoming fragment'sy.,)
coordinates.

If the depth buffer test fails, the incoming fragment is discarded. The stencil
value at the fragment’ér,,, y,,) coordinates is updated according to the function
currently in effect for depth buffer test failure. Otherwise, the fragment continues
to the next operation and the value of the depth buffer at the fragment's.,)
location is set to the fragment’s, value. In this case the stencil value is updated
according to the function currently in effect for depth buffer test success.

The necessary state is an eight-valued integer and a single bit indicating
whether depth buffering is enabled or disabled. In the initial state the function
is LESSand the test is disabled.

If there is no depth buffer, it is as if the depth buffer test always passes.

Version 1.4 - July 24, 2002

4.1. PER-FRAGMENT OPERATIONS 169

4.1.7 Blending

Blending combines the incomirgpurcefragment’s R, G, B, and A values with
the destinationrR, G, B, and A values stored in the framebuffer at the fragment’s
(zw, yw) locCation.

Source and destination values are combined according tbl¢inel equation
guadruplets of source and destination weighting factors determined tijetheé
functions and a constariilend colorto obtain a new set of R, G, B, and A values,
as described below. Each of these floating-point values is clampgd itband
converted back to a fixed-point value in the manner described in setti@n9
The resulting four values are sent to the next operation.

Blending is dependent on the incoming fragment’s alpha value and that of the
corresponding currently stored pixel. Blending applies only in RGBA mode; in
color index mode it is bypassed. Blending is enabled or disabled &siagle or
Disablewith the symbolic constarBLEND If it is disabled, or if logical operation
on color values is enabled (sectiéri.9, proceed to the next operation.

Blend Equation

Blending is controlled by thblend equationdefined by the command
void BlendEquation(enum mode);

In the following discussion;’; refers to the source color for an incoming frag-
ment,C, refers to the destination color at the corresponding framebuffer location,
and (., refers to the constant blend color. Individual RGBA components of these
colors are denoted by subscriptsfd, andc respectively.C refers to the new
color resulting from blending.

Destination (framebuffer) components are taken to be fixed-point values rep-
resented according to the scheme given in se&idf.9(Final Color Processing),
as are source (fragment) components. Constant color components are taken to be
floating point values.

Prior to blending, each fixed-point color component undergoes an implied con-
version to floating point. This conversion must leave the values 0 and 1 invariant.
Blending computations are treated as if carried out in floating point.

BlendEquation modeFUNCADDdefines the blending equation as

C=0C8+CyD

where C; and C; are the source and destination colors, ghénd D are
quadruplets of weighting factors determined by tiend functionslescribed be-
low.

Version 1.4 - July 24, 2002

170 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

If modeis FUNCSUBTRACTthe blending equation is defined as

C =08 —CyD
If modeis FUNCREVERSESUBTRACTthe blending equation is defined as

C=0CyD —CsS
If modeis MIN, the blending equation is defined as

C = min(Cs, Cy)
Finally, if modeis MAX the blending equation is defined as

C = max(Cs, Cy)

The blending equation is evaluated separately for each color component and
the corresponding weighting factors.

Blend Functions

The weighting factors used by the blend equation are determined by the blend
functions. Blend functions are specified with the commands

void BlendFuncSeparaté enum srcRGB enum dstRGB
enum srcAlphg enum dstAlpha);
void BlendFunc(enumsrc, enum dst);

BlendFuncSeparateargumentsrcRGBanddstRGBdetermine the source and
destination RGB blend functions, respectively, wisiteAlphaanddstAlphadeter-
mine the source and destination alpha blend functi@isndFunc argumentsrc
determines both RGB and alpha source functions, wisteletermines both RGB
and alpha destination functions.

The possible source and destination blend functions and their corresponding
computed blend factors are summarized in Table

Blend Color
The constant colof’. to be used in blending is specified with the command

void BlendColor(clampf red, clampf greenclampf blug
clampf alpha);

The four parameters are clamped to the raligé| before being stored. The
constant color can be used in both the source and destination blending functions

Version 1.4 - July 24, 2002

4.1. PER-FRAGMENT OPERATIONS

171

Function RGB Blend Factors Alpha Blend Factor
(Sr, Sg,Sp) or (D, Dg, Dy) | Sq0r D,
ZERO (0,0,0) 0
ONE (1,1,1) 1
SRCCOLOR (Rs, G, Bs) A
ONEMINUS SRCCOLOR (1,1,1) — (Rs, G, Bs) 1— As
DST.COLOR (Ryq,Gyq, By) A,
ONEMINUSDST.COLOR (1,1,1) — (Rgq, Gq, Bq) 1— Ay
SRCALPHA (Ag, Ag, Ag) Ay
ONEMINUS SRCALPHA (1,1,1) — (Ag, As, Ay) 1— A
DSTALPHA (Ag, Ag, Ag) Ay
ONEMINUSDSTALPHA (1,1,1) — (Ag, Ag, Ag) 1— Ay
CONSTANTOLOR (R, Ge, Be) A,
ONEMINUSCONSTANTOLOR| (1,1,1) — (R., G, B.) 1— A,
CONSTANRLPHA (Ae, Ac, Ap) A,
ONEMINUSCONSTANRALPHA | (1,1 71) (Ae, Ae, Ar) 1— A,
SRCALPHASATURATE (f.f, f)? 1

Table 4.1: RGBand ALPHA source and destination blending functions and the
corresponding blend factors. Addition and subtraction of triplets is performed

component-wise.

1 SRCALPHASATURATEHS valid only for source RGB and alpha blending func-

tions.
2 f =min(4,, 1 — Ay).

Version 1.4 - July 24, 2002

172 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

Blending State

The state required for blending is an integer indicating the blending equation, four
integers indicating the source and destination RGB and alpha blending functions,
four floating-point values to store the RGBA constant blend color, and a bit in-
dicating whether blending is enabled or disabled. The initial blending equation
is FUNCADD The initial blending functions ar@NEfor the source RGB and al-
pha functions an@EROfor the destination RGB and alpha functions. The initial
constant blend color IR, G, B, A) = (0,0, 0,0). Initially, blending is disabled.
Blending occurs once for each color buffer currently enabled for writing (sec-
tion 4.2.7) using each buffer’s color fot’;. If a color buffer has no A value, then
A, is taken to bd.

4.1.8 Dithering

Dithering selects between two color values or indices. In RGBA mode, consider
the value of any of the color components as a fixed-point value witiits to the

left of the binary point, where: is the number of bits allocated to that component
in the framebuffer; call each such value For eache, dithering selects a value

c1 such thaic; € {max{0, [c|] — 1}, [c]} (after this selection, treat as a fixed
point value in [0,1] withm bits). This selection may depend on thg andy,,
coordinates of the pixel. In color index mode, the same rule appliesaidting a
single color index.c must not be larger than the maximum value representable in
the framebuffer for either the component or the index, as appropriate.

Many dithering algorithms are possible, but a dithered value produced by any
algorithm must depend only the incoming value and the fragmemtrsly window
coordinates. If dithering is disabled, then each color component is truncated to a
fixed-point value with as many bits as there are in the corresponding component in
the framebuffer; a color index is rounded to the nearest integer representable in the
color index portion of the framebuffer.

Dithering is enabled witkEnable and disabled witDisableusing the symbolic
constantDITHER. The state required is thus a single bit. Initially, dithering is
enabled.

4.1.9 Logical Operation

Finally, a logical operation is applied between the incoming fragment’s color or
index values and the color or index values stored at the corresponding location in
the framebuffer. The result replaces the values in the framebuffer at the fragment’s
(xw, yw) coordinates. The logical operation on color indices is enabled or dis-
abled withEnable or Disable using the symbolic constamiDEX_LOGIC_OP. (For

Version 1.4 - July 24, 2002

4.1. PER-FRAGMENT OPERATIONS 173

Argument value | Operation
CLEAR 0

AND sAd
ANDREVERSE s A\ —d
COPY S
ANDINVERTED | s Ad
NOOP d

XOR sxor d
OR sVd
NOR =(sVd)
EQUIV —(s xor d)
INVERT -d
ORREVERSE sV —d
COPYINVERTED | —s
ORINVERTED s Vd
NAND (s Ad)
SET all 1's

Table 4.2: Arguments thogicOp and their corresponding operations.

compatibility with GL version 1.0, the symbolic constar@GIC_ OPmay also be
used.) The logical operation on color values is enabled or disablecEndble or
Disable using the symbolic consta®OLOR.OGIC_OP If the logical operation is
enabled for color values, it is as if blending were disabled, regardless of the value
of BLEND

The logical operation is selected by

void LogicOp(enumop);

opis a symbolic constant; the possible constants and corresponding operations are
enumerated in Tablé.2. In this table,s is the value of the incoming fragment
andd is the value stored in the framebuffer. The numeric values assigned to the
symbolic constants are the same as those assigned to the corresponding symbolic
values in the X window system.

Logical operations are performed independently for each color index buffer
that is selected for writing, or for each red, green, blue, and alpha value of each
color buffer that is selected for writing. The required state is an integer indicating
the logical operation, and two bits indicating whether the logical operation is en-
abled or disabled. The initial state is for the logic operation to be gived@yy
and to be disabled.

Version 1.4 - July 24, 2002

174 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

4.1.10 Additional Multisample Fragment Operations

If the DrawBuffer mode iSNONEno change is made to any multisample or color
buffer. Otherwise, fragment processing is as described below.

If MULTISAMPLEIs enabled, and the value 8AMPLEBUFFERSIs one, the
alpha test, stencil test, depth test, blending, and dithering operations are performed
for each pixel sample, rather than just once for each fragment. Failure of the alpha,
stencil, or depth test results in termination of the processing of that sample, rather
than discarding of the fragment. All operations are performed on the color, depth,
and stencil values stored in the multisample buffer (to be described in a following
section). The contents of the color buffers are not modified at this point.

Stencil, depth, blending, and dithering operations are performed for a pixel
sample only if that sample’s fragment coverage bit is a value of 1. If the corre-
sponding coverage bit is 0, no operations are performed for that sample.

If MULTISAMPLEIs disabled, and the value 8AMPLEBUFFERSIs one, the
fragment may be treated exactly as described above, with optimization possible
because the fragment coverage must be set to full coverage. Further optimization is
allowed, however. An implementation may choose to identify a centermost sample,
and to perform alpha, stencil, and depth tests on only that sample. Regardless of
the outcome of the stencil test, all multisample buffer stencil sample values are set
to the appropriate new stencil value. If the depth test passes, all multisample buffer
depth sample values are set to the depth of the fragment's centermost sample’s
depth value, and all multisample buffer color sample values are set to the color
value of the incoming fragment. Otherwise, no change is made to any multisample
buffer color or depth value.

After all operations have been completed on the multisample buffer, the color
sample values are combined to produce a single color value, and that value is writ-
teninto each color buffer that is currently enabled, based obtaeBuffer mode.

An implementation may defer the writing of the color buffer until a later time,
but the state of the framebuffer must behave as if the color buffer was updated
as each fragment was processed. The method of combination is not specified,
though a simple average computed independently for each color component is rec-
ommended.

4.2 Whole Framebuffer Operations
The preceding sections described the operations that occur as individual fragments

are sent to the framebuffer. This section describes operations that control or affect
the whole framebuffer.

Version 1.4 - July 24, 2002

4.2. WHOLE FRAMEBUFFER OPERATIONS 175

symbolic front | front | back | back | aux
constant left | right | left | right | 4
NONE

FRONTLEFT °

FRONTRIGHT °

BACKLEFT °
BACKRIGHT °
FRONT ° °

BACK ° °
LEFT .

RIGHT °

FRONTANDBACK ° ° °

AUX °

Table 4.3: Arguments tBrawBuffer and the buffers that they indicate.

4.2.1 Selecting a Buffer for Writing

The first such operation is controlling the buffer into which color values are written.
This is accomplished with

void DrawBuffer (enum buf);

bufis a symbolic constant specifying zero, one, two, or four buffers for writing.
The constants aldONEFRONTLEFT, FRONTRIGHT, BACKLEFT, BACKRIGHT,
FRONT BACK LEFT, RIGHT, FRONTANDBACK and AUXO0throughAUX:, where
n + 1 is the number of available auxiliary buffers.

The constants refer to the four potentially visible buffeosit_left, front_right,
backleft, andbackright, and to theauxiliary buffers. Arguments other thakuX
that omit reference toEFT or RIGHT refer to both left and right buffers. Argu-
ments other thaAUX that omit reference tBRONTor BACKrefer to both front and
back buffers AUX enables drawing only tauxiliary buffer ;. EachAUX adheres
to AUX = AUX0+ i. The constants and the buffers they indicate are summarized
in Table4.3. If DrawBuffer is is supplied with a constant (other thBI@NE that
does not indicate any of the color buffers allocated to the GL context, the error
INVALID _OPERATIONesults.

Indicating a buffer or buffers usingrawBuffer causes subsequent pixel color
value writes to affect the indicated buffers. If more than one color buffer is se-
lected for drawing, blending and logical operations are computed and applied in-

Version 1.4 - July 24, 2002

176 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

dependently for each buffer. CallifgrawBuffer with a value ofNONENhibits
the writing of color values to any buffer.

Monoscopic contexts include only left buffers, while stereoscopic contexts in-
clude both left and right buffers. Likewise, single buffered contexts include only
front buffers, while double buffered contexts include both front and back buffers.
The type of context is selected at GL initialization.

The state required to handle buffer selection is a set of Up+ta: bits. 4 bits
indicate if the front left buffer, the front right buffer, the back left buffer, or the
back right buffer, are enabled for color writing. The othebits indicate which of
the auxiliary buffers is enabled for color writing. In the initial state, the front buffer
or buffers are enabled if there are no back buffers; otherwise, only the back buffer
or buffers are enabled.

4.2.2 Fine Control of Buffer Updates

Four commands are used to mask the writing of bits to each of the logical frame-
buffers after all per-fragment operations have been performed. The commands

void IndexMask(uint mask);
void ColorMask(boolean r, boolean g, boolean b,
boolean a);

control the color buffer or buffers (depending on which buffers are currently indi-
cated for writing). The least significantbits of mask wheren is the number of
bits in a color index buffer, specify a mask. Wheré appears in this mask, the
corresponding bit in the color index buffer (or buffers) is written; whefeap-
pears, the bit is not written. This mask applies only in color index mode. In RGBA
mode,ColorMask is used to mask the writing of R, G, B and A values to the color
buffer or buffersr, g, b, anda indicate whether R, G, B, or A values, respectively,
are written or not (a value afRUEmeans that the corresponding value is written).
In the initial state, all bits (in color index mode) and all color values (in RGBA
mode) are enabled for writing.

The depth buffer can be enabled or disabled for writipgzalues using

void DepthMask(boolean mask);

If maskis non-zero, the depth buffer is enabled for writing; otherwise, itis disabled.
In the initial state, the depth buffer is enabled for writing.
The command

void StencilMask(uint mask);

Version 1.4 - July 24, 2002

4.2. WHOLE FRAMEBUFFER OPERATIONS 177

controls the writing of particular bits into the stencil planes. The least significant
bits of maskcomprise an integer mask is the number of bits in the stencil buffer),
just as forindexMask. The initial state is for the stencil plane mask to be all ones.
The state required for the various masking operations is two integers and a bit:
an integer for color indices, an integer for stencil values, and a bit for depth values.
A set of four bits is also required indicating which color components of an RGBA
value should be written. In the initial state, the integer masks are all ones as are the
bits controlling depth value and RGBA component writing.

Fine Control of Multisample Buffer Updates

When the value 06AMPLEBUFFERSs one,ColorMask, DepthMask, andSten-
cilMask control the modification of values in the multisample buffer. The color
mask has no effect on modifications to the color buffers. If the color mask is
entirely disabled, the color sample values must still be combined (as described
above) and the result used to replace the color values of the buffers enabled by
DrawBuffer .

4.2.3 Clearing the Buffers

The GL provides a means for setting portions of every pixel in a particular buffer
to the same value. The argument to

void Clear(bitfield buf);

is the bitwise OR of a number of values indicating which buffers are
to be cleared. The values al@OLORBUFFERBIT, DEPTHBUFFERBIT,
STENCIL_.BUFFERBIT , andACCUMBUFFERBIT , indicating the buffers currently
enabled for color writing, the depth buffer, the stencil buffer, and the accumulation
buffer (see below), respectively. The value to which each buffer is cleared depends
on the setting of the clear value for that buffer. If the mask is not a bitwise OR of
the specified values, then the erfdVALID _VALUEIs generated.

void ClearColor(clampf r,clampf g, clampf b,
clampf a);

sets the clear value for the color buffers in RGBA mode. Each of the specified
components is clamped {0, 1] and converted to fixed-point according to the rules
of section2.13.9

void Clearindex(float index);

Version 1.4 - July 24, 2002

178 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

sets the clear color indeindexis converted to a fixed-point value with unspecified
precision to the left of the binary point; the integer part of this value is then masked
with 2™ — 1, wherem is the number of bits in a color index value stored in the
framebuffer.

void ClearDepth(clampd d);

takes a floating-point value that is clamped to the rajiigeé] and converted to
fixed-point according to the rules for a windoywalue given in sectior2.10.1
Similarly,

void ClearStencil(int s);

takes a single integer argument that is the value to which to clear the stencil buffer.
sis masked to the number of bitplanes in the stencil buffer.

void ClearAccum(float r, float g, float b, float a);

takes four floating-point arguments that are the values, in order, to which to set the
R, G, B, and A values of the accumulation buffer (see the next section). These
values are clamped to the rangel, 1] when they are specified.

When Clear is called, the only per-fragment operations that are applied (if
enabled) are the pixel ownership test, the scissor test, and dithering. The masking
operations described in the last sectidr2(2 are also effective. If a buffer is not
present, then €lear directed at that buffer has no effect.

The state required for clearing is a clear value for each of the color buffer, the
depth buffer, the stencil buffer, and the accumulation buffer. Initially, the RGBA
color clear value is (0,0,0,0), the clear color index is 0, and the stencil buffer and
accumulation buffer clear values are all 0. The depth buffer clear value is initially
1.0.

Clearing the Multisample Buffer

The color samples of the multisample buffer are cleared when one or more color
buffers are cleared, as specified by thiear mask bitCOLORBUFFERBIT and
theDrawBuffer mode. If theDrawBuffer mode iSNONEthe color samples of the
multisample buffer cannot be cleared.

If the Clear mask bitsDEPTHBUFFERBIT or STENCIL_.BUFFERBIT are set,
then the corresponding depth or stencil samples, respectively, are cleared.

Version 1.4 - July 24, 2002

4.2. WHOLE FRAMEBUFFER OPERATIONS 179

4.2.4 The Accumulation Buffer

Each portion of a pixel in the accumulation buffer consists of four values: one for
each of R, G, B, and A. The accumulation buffer is controlled exclusively through
the use of

void Accum(enumop, float value);

(except for clearing it)opis a symbolic constant indicating an accumulation buffer
operation, andralueis a floating-point value to be used in that operation. The
possible operations areCCUMLOADR RETURNMULT, andADD

When the scissor test is enabled (sectioh 2, then only those pixels within
the current scissor box are updated by &egum operation; otherwise, all pixels
in the window are updated. The accumulation buffer operations apply identically
to every affected pixel, so we describe the effect of each operation on an individ-
ual pixel. Accumulation buffer values are taken to be signed values in the range
[—1,1]. UsingACCUMbtains R, G, B, and A components from the buffer currently
selected for reading (sectigh3.2. Each component, considered as a fixed-point
value in[0, 1]. (see sectior2.13.9, is converted to floating-point. Each result is
then multiplied byvalue The results of this multiplication are then added to the
corresponding color component currently in the accumulation buffer, and the re-
sulting color value replaces the current accumulation buffer color value.

The LOADoperation has the same effect aSCUMbut the computed values
replace the corresponding accumulation buffer components rather than being added
to them.

The RETURNoperation takes each color value from the accumulation buffer,
multiplies each of the R, G, B, and A componentsuayue and clamps the re-
sults to the rangé, 1] The resulting color value is placed in the buffers currently
enabled for color writing as if it were a fragment produced from rasterization, ex-
cept that the only per-fragment operations that are applied (if enabled) are the pixel
ownership test, the scissor test (sectioh.?, and dithering (sectiod.1.§. Color
masking (sectiod.2.2 is also applied.

TheMULToperation multiplies each R, G, B, and A in the accumulation buffer
by valueand then returns the scaled color components to their corresponding ac-
cumulation buffer locations. this caselueis clamped to the range-1, 1]. ADDis
the same asULTexcept thavalueis added to each of the color components.

The color components operated on Agcum must be clamped only if the
operation iISRETURNInN this case, a value sent to the enabled color buffers is first
clamped td0, 1]. Otherwise, results are undefined if the result of an operation on a
color component is out of the ran@e1, 1]. If there is no accumulation buffer, or if
the GL is in color index modeiccum generates the err¢VALID _OPERATION

Version 1.4 - July 24, 2002

180 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

No state (beyond the accumulation buffer itself) is required for accumulation
buffering.

4.3 Drawing, Reading, and Copying Pixels

Pixels may be written to and read from the framebuffer usindutaevPixels and
ReadPixelscommands.CopyPixelscan be used to copy a block of pixels from
one portion of the framebuffer to another.

4.3.1 Writing to the Stencil Buffer

The operation oDrawPixels was described in sectidh6.4 except if theformat
argument wasSTENCIL_INDEX. In this case, all operations described Braw-
Pixels take place, but windowz,y) coordinates, each with the corresponding
stencil index, are produced in lieu of fragments. Each coordinate-stencil index
pair is sent directly to the per-fragment operations, bypassing the texture, fog, and
antialiasing application stages of rasterization. Each pair is then treated as a frag-
ment for purposes of the pixel ownership and scissor tests; all other per-fragment
operations are bypassed. Finally, each stencil index is written to its indicated loca-
tion in the framebuffer, subject to the current settingténcilMask.

The errorINVALID _OPERATIONesults if there is no stencil buffer.

4.3.2 Reading Pixels

The method for reading pixels from the framebuffer and placing them in client
memory is diagrammed in Figure2. We describe the stages of the pixel reading
process in the order in which they occur.

Pixels are read using

void ReadPixelgint x, int vy, sizei width, sizei height
enumformat, enum type void *data);

The arguments after andy to ReadPixelscorrespond to those drawPixels.
The pixel storage modes that applyReadPixelsand other commands that query
images (see sectidhl) are summarized in Table4.

Obtaining Pixels from the Framebuffer

If the formatis DEPTHCOMPONENThen values are obtained from the depth buffer.
If there is no depth buffer, the erroiVALID _OPERATIONDCCUTS.

Version 1.4 - July 24, 2002

4.3. DRAWING, READING, AND COPYING PIXELS

181

RGBA pixel
datain

convert
to float

scale
and bias

color table
lookup

convolution

post color table
convolution

color matrix
cale and bias

convert
RGB to L

paths are not shown.

cale and bias ¢

color index pixel
data in

color table
lookup

histogram

byte, short, int, o r float pixel
data stream (index or component)

shift
and offset

index to index
look up

mask to
@"-1)

Figure 4.2. Operation dReadPixels Operations in dashed boxes may be enabled
or disabled. RGBA and color index pixel paths are shown; depth and stencil pixel

Version 1.4 - July 24, 2002

182 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

Parameter Name | Type | Initial Value | Valid Range |
PACKSWABBYTES boolean FALSE TRUEFALSE
PACKLSB_FIRST boolean| FALSE TRUHFALSE
PACKROW.ENGTH integer 0 [0, 00)
PACKSKIP _ROWS integer 0 [0, 00)
PACKSKIP _PIXELS integer 0 [0, 00)
PACKALIGNMENT integer 4 1,2,4,8
PACKIMAGEHEIGHT | integer 0 [0, 00)
PACKSKIP _IMAGES integer 0 [0, 00)

Table 4.4:PixelStore parameters pertaining ®eadPixels GetColorTable, Get-
ConvolutionFilter, GetSeparableFilter, GetHistogram, GetMinmax, GetPoly-
gonStipple andGetTexImage

If there is a multisample buffeiISAMPLEBUFFERSIs 1), then values are ob-
tained from the depth samples in this buffer. It is recommended that the depth
value of the centermost sample be used, though implementations may choose any
function of the depth sample values at each pixel.

If the formatis STENCIL_INDEX, then values are taken from the stencil buffer;
again, if there is no stencil buffer, the ertdiVALID _OPERATIONDCCUTS.

If there is a multisample buffer, then values are obtained from the stencil sam-
ples in this buffer. It is recommended that the stencil value of the centermost sam-
ple be used, though implementations may choose any function of the stencil sample
values at each pixel.

For all other formats, the buffer from which values are obtained is one of the
color buffers; the selection of color buffer is controlled wRkadBuffer.

The command

void ReadBuffer(enumsrc);

takes a symbolic constant as argument. The possible valueSRORTLEFT,
FRONTRIGHT, BACKLEFT, BACKRIGHT, FRONTBACK LEFT, RIGHT, andAUX0
throughAUX:. FRONTandLEFT refer to the front left bufferBACKrefers to the
back left buffer, andRIGHT refers to the front right buffer. The other constants cor-
respond directly to the buffers that they name. If the requested buffer is missing,
then the erroiNVALID _OPERATIONis generated. The initial setting fétead-
Buffer is FRONTIf there is no back buffer anBACKotherwise.

ReadPixelsobtains values from the selected buffer from each pixel with lower
left hand corner afr + ¢,y + j) for 0 < i < width and0 < j < height; this pixel

Version 1.4 - July 24, 2002

4.3. DRAWING, READING, AND COPYING PIXELS 183

is said to be théth pixel in thejth row. If any of these pixels lies outside of the
window allocated to the current GL context, the values obtained for those pixels
are undefined. Results are also undefined for individual pixels that are not owned
by the current context. OtherwisBeadPixelsobtains values from the selected
buffer, regardless of how those values were placed there.

If the GL is in RGBA mode, anfiormatis one ofREQ) GREENBLUE ALPHA
RGB RGBABGR BGRALUMINANCE Or LUMINANCEALPHA then red, green, blue,
and alpha values are obtained from the selected buffer at each pixel location.
If the framebuffer does not support alpha values then the A that is obtained is
1.0. If formatis COLORNDEX and the GL is in RGBA mode then the error
INVALID _OPERATIONoccurs. If the GL is in color index mode, arfidrmat is
not DEPTHCOMPONENGr STENCIL_INDEX, then the color index is obtained at
each pixel location.

Conversion of RGBA values

This step applies only if the GL is in RGBA mode, and then onlyoifmat is
neitherSTENCIL_INDEX nor DEPTHCOMPONENThe R, G, B, and A values form

a group of elements. Each element is taken to be a fixed-point val0elinwith

m bits, wherem is the number of bits in the corresponding color component of the
selected buffer (see secti@ril3.9.

Conversion of Depth values

This step applies only fiormatis DEPTHCOMPONENRAN element is taken to be a
fixed-point value in [0,1] withm bits, wherem is the number of bits in the depth
buffer (see sectioA.10.]).

Pixel Transfer Operations

This step is actually the sequence of steps that was described separately in sec-
tion 3.6.5 After the processing described in that section is completed, groups are
processed as described in the following sections.

Conversion to L

This step applies only to RGBA component groups, and only ifth@atis either
LUMINANCEor LUMINANCEALPHA A value L is computed as

L=R+G+B

Version 1.4 - July 24, 2002

184 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

| typeParameter | Index Mask|

UNSIGNEDBYTE | 28 —1
BITMAP 1

BYTE 21— 1
UNSIGNEDSHORT| 216 — 1
SHORT 2 1
UNSIGNEDINT 232 _ 1

INT 231 1

Table 4.5: Index masks used BgadPixels Floating point data are not masked.

where R, G, and B are the values of the R, G, and B components. The single
computed L component replaces the R, G, and B components in the group.

Final Conversion

For an index, if thetypeis not FLOAT, final conversion consists of masking the
index with the value given in Table5, if the typeis FLOAT, then the integer index
is converted to a GL float data value.

For an RGBA color, each component is first clamped0td]. Then the
appropriate conversion formula from tablés is applied to the component.

Placement in Client Memory

Groups of elements are placed in memory just as they are taken from memory for
DrawPixels. That is, theith group of thejth row (corresponding to thigh pixel in

the jth row) is placed in memory just where tktl group of thejth row would be
taken from forDrawPixels. SeeUnpacking under sectior3.6.4 The only differ-

ence is that the storage mode parameters whose names begirAgithare used
instead of those whose names begin VUWtWPACK. If the formatis REQ GREEN

BLUE, ALPHA or LUMINANCE only the corresponding single element is written.
Likewise if theformatis LUMINANCEALPHA RGB or BGR only the corresponding

two or three elements are written. Otherwise all the elements of each group are
written.

4.3.3 Copying Pixels

CopyPixelstransfers a rectangle of pixel values from one region of the framebuffer
to another. Pixel copying is diagrammed in Figéra.

Version 1.4 - July 24, 2002

4.3. DRAWING, READING, AND COPYING PIXELS 185

typeParameter GL Data Type| Component
Conversion Formula
UNSIGNEDBYTE ubyte c=(28-1)f
BYTE byte c=[28-1)f -1]/2
UNSIGNEDSHORT ushort c=02% —1)f
SHORT short c=[2%-1)f —-1]/2
UNSIGNEDINT uint c=022-1)f
INT int c=[2%-1)f -1]/2
FLOAT float c=1f
UNSIGNEDBYTE3 3 2 ubyte c=02N - 1)f
UNSIGNEDBYTE2 3 3 REV ubyte c=02N -1)f
UNSIGNEDSHORT5 6 5 ushort c=02N -1)f
UNSIGNEDSHORT5 6 5 REV ushort c=02N - 1)f
UNSIGNEDSHORT4 4 4 4 ushort c=02N -1)f
UNSIGNEDSHORT4 4 4 4 REV ushort c=02N -1)f
UNSIGNEDSHORT5 5 51 ushort c=02N -1)f
UNSIGNEDSHORTL 5 5 5 REV ushort c=02N-1)f
UNSIGNEDINT 8 8 8.8 uint c=02N -1)f
UNSIGNEDINT .8.8_8_8_REV uint c=02N -1)f
UNSIGNEDINT -10.10.10 2 uint c=02N -1)f
UNSIGNEDINT 2 10 10 10 REV uint c=02N -1)f

Table 4.6: Reversed component conversions, used when component data are being
returned to client memory. Color, normal, and depth components are converted
from the internal floating-point representatiof) (o a datum of the specified GL

data type €) using the specified equation. All arithmetic is done in the internal
floating point format. These conversions apply to component data returned by GL
guery commands and to components of pixel data returned to client memory. The
eqguations remain the same even if the implemented ranges of the GL data types are
greater than the minimum required ranges. (See Tallg Equations withV as

the exponent are performed for each bitfield of the packed data typeMstt to

the number of bits in the bitfield.

Version 1.4 - July 24, 2002

186 CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE. ..

RGBA pixel color index pixel
data from framebuff er } data from framebuff er
convert
to float

scale shift
and bias and offset

ndex to RGBA
looku p

color table
lookup

convolution color table
scale and bias lookup

post color histogram
convolution lookup

color matrix minmax
scale and bias

clamp final mask to
to [0,1] conversion (2” -1
RGBA pixel |—> color index pixel |—>
data out data out

Figure 4.3. Operation dopyPixels Operations in dashed boxes may be enabled
or disabled. Index-to-RGBA lookup is currently never performed. RGBA and color
index pixel paths are shown; depth and stencil pixel paths are not shown.

Version 1.4 - July 24, 2002

4.3. DRAWING, READING, AND COPYING PIXELS 187

void CopyPixelgint x,int vy, sizei width, sizei height
enumtype);

typeis a symbolic constant that must be oneCAfLORSTENCIL, or DEPTH indi-
cating that the values to be transferred are colors, stencil values, or depth values,
respectively. The first four arguments have the same interpretation as the corre-
sponding arguments ®ReadPixels

Values are obtained from the framebuffer, converted (if appropriate), then sub-
jected to the pixel transfer operations described in sedi6érf just as ifRead-
Pixels were called with the corresponding arguments. If tiyge is STENCIL
or DEPTH then it is as if theformat for ReadPixelswere STENCIL_INDEX or
DEPTHCOMPONENTespectively. If theypeis COLORthen if the GL is in RGBA
mode, it is as if thdormatwereRGBAwhile if the GL is in color index mode, it is
as if theformatwere COLORNDEX.

The groups of elements so obtained are then written to the framebuffer just as
if DrawPixels had been givewidth andheight, beginning with final conversion
of elements. The effectii®rmatis the same as that already described.

4.3.4 Pixel Draw/Read State

The state required for pixel operations consists of the parameters that are set with
PixelStore PixelTransfer, and PixelMap. This state has been summarized in
Tables3.1, 3.2, and3.3. The current setting oReadBuffer, an integer, is also
required, along with the current raster position (secfidi?). State set withPixel-
Storeis GL client state.

Version 1.4 - July 24, 2002

Chapter 5

Special Functions

This chapter describes additional GL functionality that does not fit easily into any
of the preceding chapters. This functionality consists of evaluators (used to model
curves and surfaces), selection (used to locate rendered primitives on the screen),
feedback (which returns GL results before rasterization), display lists (used to des-
ignate a group of GL commands for later execution by the GL), flushing and fin-
ishing (used to synchronize the GL command stream), and hints.

5.1 Evaluators

Evaluators provide a means to use a polynomial or rational polynomial mapping
to produce vertex, normal, and texture coordinates, and colors. The values so pro-
duced are sent on to further stages of the GL as if they had been provided directly
by the client. Transformations, lighting, primitive assembly, rasterization, and per-
pixel operations are not affected by the use of evaluators.

Consider theR*-valued polynomiap(u) defined by

p(u) =Y Bl (u)R; (5.1)
=0
with R; € R* and
B} (u) = (”) u'(L—u)",

theith Bernstein polynomial of degree (recall that0® = 1 and(j) = 1). Each
R, is acontrol point The relevant command is

void Mapl{fd}(enumtarget T wuj, T wg,int stride
int order, T points);

188

5.1. EVALUATORS 189

| target | k | Values
MAP1VERTEX3 3 | x,y, z vertex coordinates
MAP1VERTEX4 4 | z,vy, z, w vertex coordinates
MAP1INDEX 1 | color index
MAP1COLOR4 4| R G,BA
MAP1NORMAL 3 | z, y, z normal coordinates
MAPLTEXTURECOORN | 1 | stexture coordinate
MAPLTEXTURECOORD | 2 | s, t texture coordinates
MAPLTEXTURECOORD | 3 | s, t, r texture coordinates
MAPL1TEXTURECOORD} | 4 | s,t,r, q texture coordinates

Table 5.1: Values specified by thargetto Mapl. Values are given in the order in
which they are taken.

targetis a symbolic constant indicating the range of the defined polynomial. Its
possible values, along with the evaluations that each indicates, are given in Ta-
ble 5.1 order is equal ton + 1; The errorINVALID _VALUEIs generated ibrder
is less than one or greater thetAXEVAL ORDERpointsis a pointer to a set of
n + 1 blocks of storage. Each block begins wittsingle-precision floating-point
or double-precision floating-point values, respectively. The rest of the block may
be filled with arbitrary data. Tabke.1indicates how: depends omargetand what
thek values represent in each case.

stride is the number of single- or double-precision values (as appropriate) in
each block of storage. The errtfVALID VALUE results if stride is less than
k. The order of the polynomiabrder, is also the number of blocks of storage
containing control points.

u1 anduy give two floating-point values that define the endpoints of the pre-
image of the map. When a valué is presented for evaluation, the formula used
is

u — uy
p'(v) = p(

U9 — U1 '

The errorINVALID _VALUEresults ifu; = us.
Map2 is analogous tdMapl, except that it describes bivariate polynomials of
the form

n m

p(u,v) =Y Y B (u)B]*(v)Ry;.

i=0 j=0

The form of theMap2 command is

Version 1.4 - July 24, 2002

190 CHAPTER 5. SPECIAL FUNCTIONS

Integers Reals

Vertices
EvalMesh -k [ug.uo] [0,1] Normals
EvalPoint [e [0,1] 28R, Texture Coordinates
[vyval Colors
MapGrid Map
EvalCoord

Figure 5.1. Map Evaluation.

void Map2{fd}(enumtarget T u;, T wug,int ustride
int uorder, T vy, T wo,int vstridgint vorder, T points);

targetis a range type selected from the same group as is useMldpd, ex-
cept that the strindMAP1is replaced withMAP2 pointsis a pointer to(n +
1)(m + 1) blocks of storageuorder = n + 1 andvorder = m + 1; the er-
ror INVALID _VALUEIs generated if eithetorder or vorder is less than one or
greater thamMAXEVAL ORDER The values comprisinR;; are located

(ustride)i + (vstride)j

values (either single- or double-precision floating-point, as appropriate) past the
first value pointed to byoints wq, us, v1, andv, define the pre-image rectangle
of the map; a domain poirf’, v') is evaluated as

u—u v —u

p'(u,v)=p : :
U2 —Up V2 — V1

The evaluation of a defined map is enabled or disabled ®&itable and
Disable using the constant corresponding to the map as described above. The
evaluator map generates only coordinates for texture TERITUREQ The error
INVALID _VALUEresults if eithetstride or vstride is less thark, or if u; is equal
to u2, or if vy is equal tovs. If the value of ACTIVE_TEXTURES not TEXTUREQ
callingMap {12} generates the erréikVALID _OPERATION

Figure 5.1 describes map evaluation schematically; an evaluation of enabled
maps is effected in one of two ways. The first way is to use

void EvalCoord{12}{fd}(T arg);
void EvalCoord{12}{fd}v(T arg);

Version 1.4 - July 24, 2002

5.1. EVALUATORS 191

EvalCoordl causes evaluation of the enabled one-dimensional maps. The argu-
ment is the value (or a pointer to the value) that is the domain coordirfateyal-
Coord2 causes evaluation of the enabled two-dimensional maps. The two values
specify the two domain coordinateg,and’, in that order.

When one of th&evalCoord commands is issued, all currently enabled maps
of the indicated dimension are evaluated. Then, for each enabled map, itis as if a
corresponding GL command were issued with the resulting coordinates, with one
important difference. The difference is that when an evaluation is performed, the
GL uses evaluated values instead of current values for those evaluations that are
enabled (otherwise, the current values are used). The order of the effective com-
mands is immaterial, except thatrtex (for vertex coordinate evaluation) must be
issued last. Use of evaluators has no effect on the current color, normal, or texture
coordinates. IColorMaterial is enabled, evaluated color values affect the result
of the lighting equation as if the current color was being modified, but no change
is made to the tracking lighting parameters or to the current color.

No command is effectively issued if the corresponding map (of the indicated
dimension) is not enabled. If more than one evaluation is enabled for a particu-
lar dimension (e.gMAP1TEXTURECOORO andMAP1TEXTURECOORL2), then
only the result of the evaluation of the map with the highest number of coordinates
is used.

Finally, if eitherMAP2VERTEX3 or MAP2VERTEX4 is enabled, then the nor-
mal to the surface is computed. Analytic computation, which sometimes vyields
normals of length zero, is one method which may be used. If automatic normal
generation is enabled, then this computed normal is used as the normal associated
with a generated vertex. Automatic normal generation is controlled Entible
andDisablewith symbolic the constamUTQNORMALIf automatic normal gener-
ation is disabled, then a corresponding normal map, if enabled, is used to produce
a normal. If neither automatic normal generation nor a normal map are enabled,
then no normal is sent with a vertex resulting from an evaluation (the effect is that
the current normal is used).

For MAPVERTEX3, letq = p. FOrMARPVERTEX4, letq = (z/w, y/w, z/w),
where(z, y, z,w) = p. Then let

m o 24, 94
Cou T Ov’

Then the generated analytic norma),is given byn = m/|/m]||.

The second way to carry out evaluations is to use a set of commands that pro-
vide for efficient specification of a series of evenly spaced values to be mapped.
This method proceeds in two steps. The first step is to define a grid in the domain.
This is done using

Version 1.4 - July 24, 2002

192 CHAPTER 5. SPECIAL FUNCTIONS

void MapGridl {fd}(int n, T), T u));
for a one-dimensional map or

void MapGrid2 {fd}(int n,, T «}, T ub,int n,, T v,
Tuvy);

for a two-dimensional map. In the case MfpGridl «) and v/, describe an
interval, whilen describes the number of partitions of the interval. The error
INVALID _VALUEresults ifn < 0. For MapGrid2, (u},v}]) specifies one two-
dimensional point an¢lu’, v) specifies anothen,, gives the number of partitions
betweenu)| andu), andn, gives the number of partitions betweehandvj. If
eithern, < 0 orn, < 0, then the erroNVALID _VALUEoOccurs.

Once a grid is defined, an evaluation on a rectangular subset of that grid may
be carried out by calling

void EvalMeshl(enummodeint pq,int ps);

modeis eitherPOINT or LINE . The effect is the same as performing the following
code fragment, witl\v' = (uf, — u})/n:

Begin(typs);
for i = p; to po Stepl.0
EvalCoord1(: * Au + u});
End();

where EvalCoord1f or EvalCoord1d is substituted forEvalCoordl as appro-
priate. If modeis POINT, thentypeis POINTS; if modeis LINE, thentypeis
LINE _STRIP. The one requirement is that if either= 0 or i = n, then the value
computed from x Avu’ + u] is preciselyu) or uf, respectively.

The corresponding commands for two-dimensional maps are

void EvalMesh2 enummodeint pq,int po,int ¢,
int g2);

modemust beFILL , LINE, or POINT. Whenmodeis FILL , then these commands
are equivalent to the following, withu' = (u, — u})/n andAv’ = (v —v})/m:

for i = q1 toge — 1 stepl.0
Begin(QUAD.STRIP);
for j = py to ps stepl.0
EvalCoord2(j * Au' + o} , i * AV + v));
EvalCoord2(j * Au' + o) , (i+1) * AV + v));
End();

Version 1.4 - July 24, 2002

5.1. EVALUATORS 193

If modeis LINE, then a call tdEvalMesh2is equivalent to

for i = ¢1 to ¢o Stepl1.0
Begin(LINE _STRIP);
for j = p; to ps stepl.0
EvalCoord2(j * Au' + uf , i * AV + o));
End(); ;
for i = p; to po Stepl.0
Begin(LINE _STRIP);
for j = ¢ to g2 stepl.0
EvalCoord2(i * Aw + uf , j * Av + o))
End();

If modeis POINT, then a call td&evalMesh2is equivalent to

Begin(POINTS);
for i = ¢ to g9 stepl.0
for j = p1 to ps stepl.0
EvalCoord2(j * Auw + uf , i * AV + v));
End();

Again, in all three cases, there is the requirementihaku’ + v} = v}, nx Au’ +
u) = ub, 0% Av' + 0] = o], andm x Av' + v] = vh.
An evaluation of a single point on the grid may also be carried out:
void EvalPointl(int p);

Calling it is equivalent to the command
EvalCoord1(p * Au' + u});
with Au’ andw) defined as above.
void EvalPoint2(int p,int gq);
is equivalent to the command

EvalCoord2(p * Au' + u} , ¢ * Av + v));

The state required for evaluators potentially consists of 9 one-dimensional map
specifications and 9 two-dimensional map specifications, as well as corresponding
flags for each specification indicating which are enabled. Each map specification

Version 1.4 - July 24, 2002

194 CHAPTER 5. SPECIAL FUNCTIONS

consists of one or two orders, an appropriately sized array of control points, and a
set of two values (for a one-dimensional map) or four values (for a two-dimensional
map) to describe the domain. The maximum possible order, for eitloer, is
implementation dependent (one maximum applies to bahdv), but must be at
least 8. Each control point consists of between one and four floating-point values
(depending on the type of the map). Initially, all maps have order 1 (making them
constant maps). All vertex coordinate maps produce the coordif@teso, 1)

(or the appropriate subset); all normal coordinate maps progducel); RGBA

maps producél, 1,1, 1); color index maps produce 1.0; and texture coordinate
maps producé€0, 0,0, 1). In the initial state, all maps are disabled. A flag indi-
cates whether or not automatic normal generation is enabled for two-dimensional
maps. In the initial state, automatic normal generation is disabled. Also required
are two floating-point values and an integer number of grid divisions for the one-
dimensional grid specification and four floating-point values and two integer grid
divisions for the two-dimensional grid specification. In the initial state, the bounds
of the domain interval for 1-D i® and 1.0, respectively; for 2-D, they ar@, 0)
and(1.0,1.0), respectively. The number of grid divisions is 1 for 1-D and 1 in
both directions for 2-D. If any evaluation command is issued when no vertex map
is enabled for the map dimension being evaluated, nothing happens.

5.2 Selection

Selection is used by a programmer to determine which primitives are drawn into
some region of a window. The region is defined by the current model-view and
perspective matrices.

Selection works by returning an array of integer-valuesnes This array
represents the current contents of tlaene stackThis stack is controlled with the
commands

void InitNames(void);
void PopNamd void);
void PushNamé uint name);
void LoadNameg uint name);

InitNames empties (clears) the name sta@opNamepops one name off the top
of the name stackPushNamecausesameto be pushed onto the name stack.
LoadNamereplaces the value on the top of the stack witme Loading a name
onto an empty stack generates the efMALID _OPERATIONPopping a name off
of an empty stack generatsSACKUNDERFLOVMpushing a name onto a full stack

Version 1.4 - July 24, 2002

5.2. SELECTION 195

generateSTACKOVERFLOWIhe maximum allowable depth of the name stack is
implementation dependent but must be at least 64.

In selection mode, no fragments are rendered into the framebuffer. The GL is
placed in selection mode with

int RenderMode(enum mode);

modeis a symbolic constant: one &ENDERSELECT, or FEEDBACKRENDERS
the default, corresponding to rendering as described until 8BAECTspecifies
selection mode, anBEEDBACKspecifies feedback mode (described below). Use
of any of the name stack manipulation commands while the GL is not in selection
mode has no effect.

Selection is controlled using

void SelectBuffer(sizei n, uint *buffer);

bufferis a pointer to an array of unsigned integers (called the selection array) to be
potentially filled with names, andis an integer indicating the maximum number

of values that can be stored in that array. Placing the GL in selection mode before
SelectBufferhas been called results in an errone¥ALID _OPERATIONas does
calling SelectBufferwhile in selection mode.

In selection mode, if a point, line, polygon, or the valid coordinates produced
by aRasterPoscommand intersects the clip volume (sectibhl) then this prim-
itive (or RasterPoscommand) causes a selectibit. WindowPos commands
always generate a selection hit, since the resulting raster position is always valid.
In the case of polygons, no hit occurs if the polygon would have been culled, but
selection is based on the polygon itself, regardless of the settiAglpfilonMode
When in selection mode, whenever a hame stack manipulation command is exe-
cuted olRenderModeis called and there has been a hit since the last time the stack
was manipulated dRenderMode was called, then &it recordis written into the
selection array.

A hit record consists of the following items in order: a non-negative integer
giving the number of elements on the name stack at the time of the hit, a minimum
depth value, a maximum depth value, and the name stack with the bottommost el-
ement first. The minimum and maximum depth values are the minimum and max-
imum taken over all the window coordinatesalues of each (post-clipping) vertex
of each primitive that intersects the clipping volume since the last hit record was
written. The minimum and maximum (each of which lies in the rafige]|) are
each multiplied by23? — 1 and rounded to the nearest unsigned integer to obtain the
values that are placed in the hit record. No depth offset arithmetic (settoB
is performed on these values.

Version 1.4 - July 24, 2002

196 CHAPTER 5. SPECIAL FUNCTIONS

Hit records are placed in the selection array by maintaining a pointer into that
array. When selection mode is entered, the pointer is initialized to the beginning
of the array. Each time a hit record is copied, the pointer is updated to point at
the array element after the one into which the topmost element of the name stack
was stored. If copying the hit record into the selection array would cause the total
number of values to exceay then as much of the record as fits in the array is
written and an overflow flag is set.

Selection mode is exited by calliiRenderModewith an argument value other
than SELECT WhenevelRenderMode s called in selection mode, it returns the
number of hit records copied into the selection array and resetSdleetBuffer
pointer to its last specified value. Values are not guaranteed to be written into the
selection array untiRenderMode is called. If the selection array overflow flag
was set, therRenderMode returns—1 and clears the overflow flag. The name
stack is cleared and the stack pointer reset wheriRRgaderModeis called.

The state required for selection consists of the address of the selection array
and its maximum size, the name stack and its associated pointer, a minimum and
maximum depth value, and several flags. One flag indicates the ctResidter-

Mode value. In the initial state, the GL is in ttRENDERmode. Another flag is

used to indicate whether or not a hit has occurred since the last name stack ma-
nipulation. This flag is reset upon entering selection mode and whenever a name
stack manipulation takes place. One final flag is required to indicate whether the

maximum number of copied names would have been exceeded. This flag is reset
upon entering selection mode. This flag, the address of the selection array, and its
maximum size are GL client state.

5.3 Feedback

Feedback, like selection, is a GL mode. The mode is selected by c&bng
derMode with FEEDBACKWhen the GL is in feedback mode, no fragments are
written to the framebuffer. Instead, information about primitives that would have
been rasterized is fed back to the application using the GL.

Feedback is controlled using

void FeedbackBuffer(sizei n, enum type float *buffer);

buffer is a pointer to an array of floating-point values into which feedback in-
formation will be placed, and is a number indicating the maximum number
of values that can be written to that arraypeis a symbolic constant describ-
ing the information to be fed back for each vertex (see FiguBe The error
INVALID _OPERATIONresults if the GL is placed in feedback mode before a call

Version 1.4 - July 24, 2002

5.3. FEEDBACK 197

to FeedbackBufferhas been made, or if a call EeedbackBufferis made while
in feedback mode.

While in feedback mode, each primitive that would be rasterized (or bitmap
or call to DrawPixels or CopyPixels if the raster position is valid) generates a
block of values that get copied into the feedback array. If doing so would cause
the number of entries to exceed the maximum, the block is partially written so as
to fill the array (if there is any room left at all). The first block of values gener-
ated after the GL enters feedback mode is placed at the beginning of the feedback
array, with subsequent blocks following. Each block begins with a code indicat-
ing the primitive type, followed by values that describe the primitive’s vertices and
associated data. Entries are also written for bitmaps and pixel rectangles. Feed-
back occurs after polygon culling (secti8rb.l) andPolygonModeinterpretation
of polygons (sectiors.5.4 has taken place. It may also occur after polygons with
more than three edges are broken up into triangles (if the GL implementation ren-
ders polygons by performing this decompositian)y, andz coordinates returned
by feedback are window coordinatesyifis returned, it is in clip coordinates. No
depth offset arithmetic (sectiod5.9 is performed on the values. In the case
of bitmaps and pixel rectangles, the coordinates returned are those of the current
raster position.

The texture coordinates and colors returned are those resulting from the clip-
ping operations described in Secti@nl3.8 Only coordinates for texture unit
TEXTUREOQare returned even for implementations which support multiple texture
units. The colors returned are the primary colors.

The ordering rules for GL command interpretation also apply in feedback
mode. Each command must be fully interpreted and its effects on both GL state
and the values to be written to the feedback buffer completed before a subsequent
command may be executed.

The GL is taken out of feedback mode by calliRgnderMode with an ar-
gument value other thafEEDBACKWhen called while in feedback modegen-
derMode returns the number of values placed in the feedback array and resets the
feedback array pointer to bdmiffer. The return value never exceeds the maximum
number of values passedkeedbackBuffer.

If writing a value to the feedback buffer would cause more values to be written
than the specified maximum number of values, then the value is not written and an
overflow flag is set. In this casRenderModereturns—1 when it is called, after
which the overflow flag is reset. While in feedback mode, values are not guaranteed
to be written into the feedback buffer befdRenderModeis called.

Figure5.2gives a grammar for the array produced by feedback. Each primitive
is indicated with a unique identifying value followed by some number of vertices.

A vertex is fed back as some number of floating-point values determined by the

Version 1.4 - July 24, 2002

198 CHAPTER 5. SPECIAL FUNCTIONS

Type | coordinates]| color | texture| total values|
2D z,y - - 2
3D T,Y, 2 - - 3
3D_.COLOR T, Y, 2 k — 3+k
3D_COLORTEXTURE| z, vy, 2 k 4 7T+ k
4D_COLORTEXTURE| z, vy, 2, w k 4 8+ k

Table 5.2: Correspondence of feedback type to number of values per versek.
in color index mode and in RGBA mode.

feedbacktype Table5.2 gives the correspondence between feedlmadfer and
the number of values returned for each vertex.
The command

void PassThrough float token);

may be used as a marker in feedback maddkenis returned as if it were a prim-
itive; it is indicated with its own unique identifying value. The ordering of any
PassThroughcommands with respect to primitive specification is maintained by
feedback.PassThroughmay not occur betweeBegin andEnd. It has no effect
when the GL is not in feedback mode.

The state required for feedback is the pointer to the feedback array, the maxi-
mum number of values that may be placed there, and the feetjgaekAn over-
flow flag is required to indicate whether the maximum allowable number of feed-
back values has been written; initially this flag is cleared. These state variables are
GL client state. Feedback also relies on the same mode flag as selection to indicate
whether the GL is in feedback, selection, or normal rendering mode.

5.4 Display Lists

A display list is simply a group of GL commands and arguments that has been
stored for subsequent execution. The GL may be instructed to process a particular
display list (possibly repeatedly) by providing a number that uniquely specifies it.
Doing so causes the commands within the list to be executed just as if they were
given normally. The only exception pertains to commands that rely upon client
state. When such a command is accumulated into the display list (that is, when
issued, not when executed), the client state in effect at that time applies to the com-
mand. Only server state is affected when the command is executed. As always,
pointers which are passed as arguments to commands are dereferenced when the

Version 1.4 - July 24, 2002

5.4. DISPLAY LISTS

feedback-list:
feedback-item feedback-list
feedback-item

feedback-item:
point
line-segment
polygon
bitmap
pixel-rectangle
passthrough

point:

POINT_TOKENvertex
line-segment:

LINE _TOKENvertex vertex

LINE _RESETTOKENvertex vertex

polygon:

POLYGON OKENn polygon-spec

polygon-spec:
polygon-spec vertex
vertex vertex vertex

bitmap:
BITMAP_TOKENvertex

199

pixel-rectangle:
DRAWPIXEL TOKENvertex
COPYPIXEL _-TOKENvertex
passthrough:
PASSTHROUGHOKENf

vertex:
2D:

fr

Frr
3D.COLOR

f f f color
3D_.COLORTEXTURE

f f f color tex
4D_COLORTEXTURE

3D:

f 1 f f color tex
color:

Frry

f
tex:

Frry

Figure 5.2: Feedback syntag.is a floating-point numben is a floating-point in-
teger giving the number of vertices in a polygon. The symbols ending WHKEN

are symbolic floating-point constants. The labels under the “vertex” rule show the
different data returned for vertices depending on the feedtygek LINE _TOKEN
andLINE _RESETTOKENare identical except that the latter is returned only when
the line stipple is reset for that line segment.

Version 1.4 - July 24, 2002

200 CHAPTER 5. SPECIAL FUNCTIONS

command is issued. (Vertex array pointers are dereferenced when the commands
ArrayElement, DrawArrays, DrawElements or DrawRangeElementsare ac-
cumulated into a display list.)

A display list is begun by calling

void NewList(uint n, enum mode);

nis a positive integer to which the display list that follows is assignednaodkis a
symbolic constant that controls the behavior of the GL during display list creation.
If modeis COMPILE then commands are not executed as they are placed in the
display list. If modeis COMPILEANDEXECUTEhen commands are executed as
they are encountered, then placed in the display listn B 0, then the error
INVALID _VALUEIs generated.

After calling NewList all subsequent GL commands are placed in the display
list (in the order the commands are issued) until a call to

void EndList(void);

occurs, after which the GL returns to its normal command execution state. It is
only whenEndList occurs that the specified display list is actually associated with
the index indicated wittNewList. The errorINVALID _OPERATIONiS generated
if EndList is called without a previous matchimggwList, or if NewList is called
a second time before callirgndList. The errorOUTOFMEMORY¥ generated if
EndList is called and the specified display list cannot be stored because insufficient
memory is available. In this case GL implementations of revision 1.1 or greater
insure that no change is made to the previous contents of the display list, if any,
and that no other change is made to the GL state, except for the state changed by
execution of GL commands when the display list mode@PILEANDEXECUTE

Once defined, a display list is executed by calling

void CallList(uint n);

n gives the index of the display list to be called. This causes the commands saved
in the display list to be executed, in order, just as if they were issued without using
a display list. Ifn. = 0, then the errofNVALID _VALUEIs generated.

The command

void CallLists(sizei n, enum type void *lists);

provides an efficient means for executing a number of display lists an in-
teger indicating the number of display lists to be called, &si3 is a pointer

Version 1.4 - July 24, 2002

5.4. DISPLAY LISTS 201

that points to an array of offsets. Each offset is constructed as determined by
lists as follows. Firsttypemay be one of the constarBYTE UNSIGNEDBYTE,
SHORTUNSIGNEDSHORTINT , UNSIGNEDINT , or FLOATiIndicating that the ar-

ray pointed to byistsis an array of bytes, unsigned bytes, shorts, unsigned shorts,
integers, unsigned integers, or floats, respectively. In this case each offset is found
by simply converting each array element to an integer (floating point values are
truncated). Furthetypemay be one o2 BYTES 3_BYTES or 4 BYTES indicat-

ing that the array contains sequences of 2, 3, or 4 unsigned bytes, in which case
each integer offset is constructed according to the following algorithm:

of fset «— 0

fori=1tob
of fset < of fset shifted left 8 bits
of fset — of fset + byte
advance to nextytein the array

bis 2, 3, or 4, as indicated kype If n = 0, CallLists does nothing.

Each of then constructed offsets is taken in order and added to a display list
base to obtain a display list number. For each humber, the indicated display list is
executed. The base is set by calling

void ListBase(uint base);

to specify the offset.

Indicating a display list index that does not correspond to any display list has no
effect. CallList or CallLists may appear inside a display list. (If theodesupplied
to NewList is COMPILEANDEXECUTE then the appropriate lists are executed,
but theCallList or CallLists, rather than those lists’ constituent commands, is
placed in the list under construction.) To avoid the possibility of infinite recursion
resulting from display lists calling one another, an implementation dependent limit
is placed on the nesting level of display lists during display list execution. This
limit must be at least4.

Two commands are provided to manage display list indices.

uint GenLists(sizei s);

returns an integet such that the indices, . . ., n+s—1 are previously unused (i.e.
there ares previously unused display list indices startingait GenLists also has
the effect of creating an empty display list for each of the indices.,n+s — 1,
so that these indices all become us€enLists returns 0 if there is no group af
contiguous previously unused display list indices, or # 0.

Version 1.4 - July 24, 2002

202 CHAPTER 5. SPECIAL FUNCTIONS

boolean IsList(uint list);

returnsTRUEIf list is the index of some display list.
A contiguous group of display lists may be deleted by calling

void DeleteListq uint list, sizei range);

wherelist is the index of the first display list to be deleted aadgeis the number

of display lists to be deleted. All information about the display lists is lost, and the
indices become unused. Indices to which no display list corresponds are ignored.
If range = 0, nothing happens.

Certain commands, when called while compiling a display list, are not com-
piled into the display list but are executed immediately. These #skist,
GenlLists, DeletelLists FeedbackBuffer, SelectBuffer, RenderMode, Color-
Pointer, FogCoordPointer, EdgeFlagPointer, IndexPointer, NormalPointer,
TexCoordPointer, SecondaryColorPointer, VertexPointer, ClientActiveTex-
ture, InterleavedArrays, EnableClientState DisableClientState PushClien-
tAttrib , PopClientAttrib , ReadPixels PixelStore GenTextures DeleteTex-
tures, AreTexturesResident IsTexture, Flush, Finish, as well adsEnabled and
all of the Get commands (see Chapték.

Teximage3D, Texlmage2D, TexlmagelD Histogram, and Col-
orTable are executed immediately when called with the correspond-
ing proxy arguments PROXYTEXTURE3D; PROXYTEXTURE2D or
PROXYTEXTURECUBEMAR PROXYTEXTURELD; PROXYHISTOGRAM
and PROXYCOLORTABLE, PROXYPOSTCONVOLUTIONCOLORTABLE, or
PROXYPOSTCOLORVATRIX COLORTABLE

Display lists require one bit of state to indicate whether a GL command should
be executed immediately or placed in a display list. In the initial state, commands
are executed immediately. If the bit indicates display list creation, an index is
required to indicate the current display list being defined. Another bit indicates,
during display list creation, whether or not commands should be executed as they
are compiled into the display list. One integer is required for the cutiistBase
setting; its initial value is zero. Finally, state must be maintained to indicate which
integers are currently in use as display list indices. In the initial state, no indices
are in use.

5.5 Flush and Finish

The command

Version 1.4 - July 24, 2002

5.6. HINTS 203

void Flush(void);

indicates that all commands that have previously been sent to the GL must complete
in finite time.
The command

void Finish(void);

forces all previous GL commands to completeinish does not return until all
effects from previously issued commands on GL client and server state and the
framebuffer are fully realized.

5.6 Hints

Certain aspects of GL behavior, when there is room for variation, may be controlled
with hints. A hint is specified using

void Hint(enumtarget enum hint);

targetis a symbolic constant indicating the behavior to be controlled, lantd

is a symbolic constant indicating what type of behavior is desiraget may

be one of PERSPECTIVECORRECTIOMINT, indicating the desired quality of
parameter interpolationPOINT_SMOOTHHINT, indicating the desired sampling
quality of points;LINE _SMOOTHHINT, indicating the desired sampling quality of
lines; POLYGOMNSMOOTHHINT, indicating the desired sampling quality of poly-
gons; FOGHINT, indicating whether fog calculations are done per pixel or per
vertex; GENERATEMIPMAPHINT, indicating the desired quality and performance
of automatic mipmap level generation; ahBXTURECOMPRESSIOMINT, indi-
cating the desired quality and performance of compressing texture imagds.
must be one oFASTEST, indicating that the most efficient option should be cho-
sen; NICEST, indicating that the highest quality option should be chosen; and
DONTCARE indicating no preference in the matter.

For the texture compression hinthant of FASTESTindicates that texture im-
ages should be compressed as quickly as possible, WHIEST indicates that
the texture images be compressed with as little image degradation as possible.
FASTESTshould be used for one-time texture compression, MIGEST should
be used if the compression results are to be retrieve@dtfCompressedTexIm-
age(section6.1.4) for reuse.

The interpretation of hints is implementation dependent. An implementation
may ignore them entirely.

The initial value of all hints iDONTCARE

Version 1.4 - July 24, 2002

Chapter 6

State and State Requests

The state required to describe the GL machine is enumerated in sé@idviost
state is set through the calls described in previous chapters, and can be queried
using the calls described in secti6ri.

6.1 Querying GL State

6.1.1 Simple Queries

Much of the GL state is completely identified by symbolic constants. The values
of these state variables can be obtained using a $6ebtommands. There are
four commands for obtaining simple state variables:

void GetBoolean{ enumvalue boolean *data);
void Getintegerv(enumvalue int *data);

void GetFloatv(enumvalue float *data);
void GetDoubley enumvalue double *data);

The commands obtain boolean, integer, floating-point, or double-precision state
variables.valueis a symbolic constant indicating the state variable to retdata

is a pointer to a scalar or array of the indicated type in which to place the returned
data. In addition

boolean IsEnabled(enumvalue);
can be used to determineviélueis currently enabled (as witBnable) or disabled.

204

6.1. QUERYING GL STATE 205

6.1.2 Data Conversions

If a Get command is issued that returns value types different from the type of the
value being obtained, a type conversion is performeds>dtBooleanvis called,

a floating-point or integer value converts RALSE if and only if it is zero (oth-
erwise it converts tdRUB. If Getintegerv (or any of theGet commands below)

is called, a boolean value is interpreted as either 0, and a floating-point value

is rounded to the nearest integer, unless the value is an RGBA color component,
a DepthRangevalue, a depth buffer clear value, or a normal coordinate. In these
cases, th&et command converts the floating-point value to an integer according
theINT entry of Table4.6; a value not in—1, 1] converts to an undefined value.

If GetFloatv is called, a boolean value is interpreted as eithéror 0.0, an in-

teger is coerced to floating-point, and a double-precision floating-point value is
converted to single-precision. Analogous conversions are carried out in the case of
GetDoublev. If a value is so large in magnitude that it cannot be represented with
the requested type, then the nearest value representable using the requested type is
returned.

Unless otherwise indicated, multi-valued state variables return their multiple
values in the same order as they are given as arguments to the commands that set
them. For instance, the twbepthRangeparameters are returned in the order
followed byf. Similarly, points for evaluator maps are returned in the order that
they appeared when passedMapl. Map2 returnsR;; in the [(uorder)i + j]th
block of values (see padge39for ¢, j, uorder, andR,;;).

Matrices may be queried and returned in transposed form by caBiety
Booleany, Getintegerv, GetFloatv, and GetDoublev with pname set to
one of TRANSPOSEODELVIEWMATRIX, TRANSPOSEFPROJECTIONMATRIX,
TRANSPOSHEXTUREMATRIX or TRANSPOSEOLORMATRIX The effect of

GetFloatv(TRANSPOSEMODELVIEWMATRIX, m);
is the same as the effect of the command sequence

GetFloatv(MODELVIEWMATRIX, m);
T

m=m",
Similar conversions occur when queryinBANSPOSIPROJECTIONMATRIX,
TRANSPOSHEXTUREMATRIX andTRANSPOSEOLORMATRIX
Most texture state variables are qualified by the valuA@fIVE_TEXTURE
to determine which server texture state vector is queried. Client texture
state variables such as texture coordinate array pointers are qualified by the
value of CLIENT_ACTIVE_TEXTURE Tables6.5, 6.6, 6.8, 6.14, 6.17, and 6.28

Version 1.4 - July 24, 2002

206 CHAPTER 6. STATE AND STATE REQUESTS

indicate those state variables which are qualified AQTIVE_TEXTURE or
CLIENT_ACTIVE_TEXTUREdJuring state queries.

6.1.3 Enumerated Queries

Other commands exist to obtain state variables that are identified by a category
(clip plane, light, material, etc.) as well as a symbolic constant. These are

void GetClipPlane(enum plane double eqn[4]);
void GetLight{if }v(enumlight, enum value T data);
void GetMaterial {if }v(enumface enum value T data);
void GetTexEnV{if }v(enumeny, enum valug T data);
void GetTexGen(if }v(enumcoord enum value T data);
void GetTexParameteKif }v(enumtarget enum value
T data);
void GetTexLevelParametefif }v(enumtarget int lod,
enumvalug T data);
void GetPixelMap{ui us f}v(enummap T data);
void GetMap{ifd }v(enummap enum value T data);

GetClipPlane always returns four double-precision valuesen these are the
coefficients of the plane equation planein eye coordinates (these coordinates
are those that were computed when the plane was specified).

GetLight places information abowalue(a symbolic constant) fdight (also a
symbolic constant) imata POSITION or SPOTDIRECTION returns values in eye
coordinates (again, these are the coordinates that were computed when the position
or direction was specified).

GetMaterial, GetTexGen GetTexEnv, andGetTexParameterare similar to
GetLight, placing information aboutalue for the target indicated by their first
argument intadata The faceargument taGetMaterial must be eitheFRONTor
BACK indicating the front or back material, respectively. Tdw argument to
GetTexEnv must be eitheMEXTUREENV or TEXTUREFILTER _CONTROLThe
coord argument toGetTexGen must be one of, T, R, or Q For GetTexGen
EYELINEAR coefficients are returned in the eye coordinates that were computed
when the plane was specifiecdBJECTLINEAR coefficients are returned in object
coordinates.

GetTexParameter
parametertarget may be one ofTEXTURELD, TEXTURE2D, TEXTURE3D, or
TEXTURECUBEMAR indicating the currently bound one-, two-, three-dimensional,
or cube map texture objedBetTexLevelParameterparametetargetmay be one

Version 1.4 - July 24, 2002

6.1. QUERYING GL STATE 207

of TEXTURELD, TEXTUREZ2D, TEXTURE3D, TEXTURECUBEMAPPOSITIVE _X,
TEXTURECUBEMARNEGATIVEX, TEXTURECUBEMARPOSITIVE Y,
TEXTURECUBEMAPNEGATIVEY, TEXTURECUBEMAPPOSITIVE _Z,
TEXTURECUBEMARNEGATIVEZ, PROXYTEXTURELD, PROXYTEXTUREZ2D,
PROXYTEXTURE3D, or PROXYTEXTURECUBEMAR indicating the one-, two-, or
three-dimensional texture object, or one of the six distinct 2D images making up
the cube map texture object or one-, two-, three-dimensional, or cube map proxy
state vector. Note thalEXTURECUBEMAPIs not a validtarget parameter for
GetTexLevelParameter because it does not specify a particular cube map face.
valueis a symbolic value indicating which texture parameter is to be obtained.
For GetTexParameter, valuemust be eitheMTEXTURERESIDENT, or one of the
symbolic values in tabl&.19 Thelod argument taGetTexLevelParameterde-
termines which level-of-detail’s state is returned. If thd argument is less than
zero or if it is larger than the maximum allowable level-of-detail then the error
INVALID _VALUEOCccurs.

For texture images with uncompressed internal formats, queries of
value of TEXTUREREDSIZE, TEXTUREGREENSIZE, TEXTUREBLUESIZE,
TEXTUREALPHASIZE, TEXTURELUMINANCESIZE, TEXTUREDEPTHSIZE,
and TEXTUREINTENSITY _SIZE return the actual resolutions of the stored im-
age array components, not the resolutions specified when the image array was
defined. For texture images with a compressed internal format, the resolutions
returned specify the component resolution of an uncompressed internal format that
produces an image of roughly the same quality as the compressed image in ques-
tion. Since the quality of the implementation’s compression algorithm is likely
data-dependent, the returned component sizes should be treated only as rough ap-
proximations.

Querying value TEXTURECOMPRESSEMAGESIZE returns the
size (in ubyte s) of the compressed texture image that would be
returned by GetCompressedTeximage (section 6.1.4). Querying
TEXTURECOMPRESSEMAGESIZE is not allowed on texture images with
an uncompressed internal format or on proxy targets and will result in an
INVALID _OPERATIONerror if attempted.

Queries ofvalue TEXTUREWIDTH TEXTUREHEIGHT, TEXTUREDEPTH and
TEXTUREBORDEReturn the width, height, depth, and border as specified when
the image array was created. The internal format of the image array is queried
asTEXTUREINTERNAL FORMATor asTEXTURECOMPONENT®r compatibility
with GL version 1.0.

For GetPixelMap, themapmust be a map name from Talde3. ForGetMap,
mapmust be one of the map types described in sedidnandvaluemust be one
of ORDERCOEFF or DOMAIN

Version 1.4 - July 24, 2002

208 CHAPTER 6. STATE AND STATE REQUESTS

6.1.4 Texture Queries

The command

void GetTexlmagg enumtex int lod, enum format
enumtype void *img);

is used to obtain texture images. It is somewhat different from the other get com-
mandsiexis a symbolic value indicating which texture (or texture face in the case
of a cube map texture target name) is to be obtaif&kTURELD, TEXTURE2D,
andTEXTURE3D indicate a one-, two-, or three-dimensional texture respectively,
while TEXTURECUBEMAPPOSITIVE X, TEXTURECUBEMAPNEGATIVEX,
TEXTURECUBEMARPOSITIVE Y, TEXTURECUBEMARNEGATIVEY,
TEXTURECUBEMAPPOSITIVE Z, and TEXTURECUBEMAPNEGATIVEZ indi-

cate the respective face of a cube map textdoal is a level-of-detail number,
formatis a pixel format from Tabl&.6, typeis a pixel type from Tabl&.5, and
imgis a pointer to a block of memory.

GetTexlmage obtains component groups from a texture image with the indi-
cated level-of-detail. The components are assigned among R, G, B, and A ac-
cording to Table5.1, starting with the first group in the first row, and continuing
by obtaining groups in order from each row and proceeding from the first row to
the last, and from the first image to the last for three-dimensional textures. These
groups are then packed and placed in client memory. No pixel transfer operations
are performed on this image, but pixel storage modes that are applicdbéath
Pixelsare applied.

For three-dimensional textures, pixel storage operations are applied as if the
image were two-dimensional, except that the additional pixel storage state values
PACKIMAGEHEIGHT and PACKSKIP _IMAGESare applied. The correspondence
of texels to memory locations is as defined TexImage3Din section3.8.1

The row length, number of rows, image depth, and number of images are de-
termined by the size of the texture image (including any borders). CdBiety
TexImage with lod less than zero or larger than the maximum allowable causes
the errorINVALID _VALUE Calling GetTexImage with format of COLORNDEX,
STENCIL_INDEX, or DEPTHCOMPONENJauses the erraNVALID _[ENUM

The command

void GetCompressedTexlmagéenumtarget int lod,
void *img);

is used to obtain texture images stored in compressed form. The parataejets
lod, andimg are interpreted in the same manner aG&tTexiImage When called,

Version 1.4 - July 24, 2002

6.1. QUERYING GL STATE 209

| BaselnternalFormat [R [G [B | A |
ALPHA 0] 0] 04
LUMINANCHOor 1) Lilo]0]1
LUMINANCEALPHA(or2) | L; | 0 | 0 | 4,
INTENSITY I; 0 0 1
RGB(OF3) R, | G; | B; 1
RG BA(OI' 4) R, | G| B; | A4

Table 6.1: Texture, table, and filter return valuds, G;, B;, A;, L;, andl; are
components of the internal format that are assigned to pixel values R, G, B, and A.
If a requested pixel value is not present in the internal format, the specified constant
value is used.

GetCompressedTexImagevrites TEXTURECOMPRESSEMAGESIZE ubyte s

of compressed image data to the memory pointed tonily The compressed
image data is formatted according to the definition of the texture’s internal format.
All pixel storage and pixel transfer modes are ignored when returning a compressed
texture image.

Calling GetCompressedTexImagavith anlod value less than zero or greater
than the maximum allowable causesIBNALID VALUEerror. CallingGetCom-
pressedTexIimagewith a texture image stored with an uncompressed internal for-
mat causes alNVALID _OPERATIONerror.

The command

boolean IsTexture(uint texture);

returnsTRUEIf textureis the name of a texture object.téxtureis zero, or is a non-
zero value that is not the name of a texture object, or if an error condition occurs,
IsTexture returnsFALSE. A name returned bgsenTextures but not yet bound, is

not the name of a texture object.

6.1.5 Stipple Query
The command
void GetPolygonStippl€ void *pattern);

obtains the polygon stipple. The pattern is packed into memory according to the
procedure given in sectiof.3.2for ReadPixels it is as if theheightandwidth
passed to that command were both equal to 32 tythe were BITMAP, and the
formatwere COLORNDEX.

Version 1.4 - July 24, 2002

210 CHAPTER 6. STATE AND STATE REQUESTS

6.1.6 Color Matrix Query

The scale and bias variables are queried usBeiFloatv with pname set

to the appropriate variable name. The top matrix on the color matrix
stack is returned byGetFloatv called with pnameset to COLORMATRIX or
TRANSPOSEOLORMVATRIX The depth of the color matrix stack, and the maxi-
mum depth of the color matrix stack, are queried v@itintegerv, settingpname

to COLORMATRIX STACKDEPTHAaNdAMAXCOLORMATRIX STACKDEPTHespec-
tively.

6.1.7 Color Table Query

The current contents of a color table are queried using

void GetColorTable(enumtarget enum format enum type
void *table);

targetmust be one of thesgular color table names listed in tabBe4. formatand
typeaccept the same values as do the corresponding parameteesTeximage

The one-dimensional color table image is returned to client memory starting at
table No pixel transfer operations are performed on this image, but pixel storage
modes that are applicablefReadPixelsare performed. Color components that are
requested in the specifiédrmat, but which are not included in the internal format

of the color lookup table, are returned as zero. The assignments of internal color
components to the components requestetbbyatare described in Table L

The functions

void GetColorTableParameter{if }v(enumtarget
enumpnameT params);

are used for integer and floating point query.

target must be one of the regular or proxy color table names listed
in table 3.4 pnameis one of COLORTABLESCALE COLORTABLEBIAS,
COLORTABLEFORMAT COLORTABLEWIDTH COLORTABLEREDSIZE,
COLORTABLE.GREENSIZE , COLORTABLEBLUESIZE,
COLORTABLEALPHASIZE, COLORTABLE LUMINANCESIZE,
or COLORTABLEINTENSITY _SIZE. The value of the specified parameter is re-
turned inparams

Version 1.4 - July 24, 2002

6.1. QUERYING GL STATE 211

6.1.8 Convolution Query

The current contents of a convolution filter image are queried with the command

void GetConvolutionFilter (enumtarget enum format
enumtype void *image);

target must beCONVOLUTIONLD or CONVOLUTIOND. format and type accept
the same values as do the corresponding parameté>dexlmage The one-
dimensional or two-dimensional images is returned to client memory starting at
image Pixel processing and component mapping are identical to thaSetdex-
Image.

The current contents of a separable filter image are queried using

void GetSeparableFilte enumtarget enum format,
enumtype void *row, void *column void *span);

targetmust beSEPARABLE2D. formatandtypeaccept the same values as do the
corresponding parameters GetTexlmage The row and column images are re-
turned to client memory starting edw andcolumnrespectivelyspanis currently
unused. Pixel processing and component mapping are identical to th&et-of
Texlmage

The functions

void GetConvolutionParameter{if }v(enumtarget
enumpname T params);

are used for integer and floating point query. target must be
CONVOLUTIOND, CONVOLUTIOND, or SEPARABLE2D. pname is
one of CONVOLUTIONBORDERCOLOR CONVOLUTIONBORDERMODE
CONVOLUTIONILTER _SCALE CONVOLUTIONFILTER BIAS,
CONVOLUTIONFORMAT CONVOLUTIONVIDTH CONVOLUTIOMNEIGHT,
MAXCONVOLUTIONVIDTH or MAXCONVOLUTIOMEIGHT. The value of the
specified parameter is returnedgarams

6.1.9 Histogram Query

The current contents of the histogram table are queried using

void GetHistogram(enumtarget boolean reset
enumformat enum type void* values);

Version 1.4 - July 24, 2002

212 CHAPTER 6. STATE AND STATE REQUESTS

targetmust beHISTOGRAMypeandformataccept the same values as do the corre-
sponding parameters @etTeximage The one-dimensional histogram table im-
age is returned twalues Pixel processing and component mapping are identical
to those ofGetTexlmage

If resetis TRUE then all counters of all elements of the histogram are reset to
zero. Counters are reset whether returned or not.

No counters are modified iesetis FALSE

Calling

void ResetHistogran(enumtarget);

resets all counters of all elements of the histogram table to zarget must be
HISTOGRAM

It is not an error to reset or query the contents of a histogram table with zero
entries.

The functions

void GetHistogramParameter{if }v(enumtarget,
enumpnameT params);

are used for integer and floating point queryarget must beHISTOGRAMor
PROXYHISTOGRAMpnameis one ofHISTOGRAMFORMATHISTOGRAMNIDTH
HISTOGRAMREDSIZE, HISTOGRAMGREENSIZE, HISTOGRAMBLUESIZE,
HISTOGRANALPHASIZE, or HISTOGRAM.UMINANCESIZE. pname may be
HISTOGRAMSINK only for target HISTOGRAM The value of the specified
parameter is returned params

6.1.10 Minmax Query
The current contents of the minmax table are queried using

void GetMinmax(enumtarget boolean reset enum format
enumtype void* values);

target must beMINMAX type andformat accept the same values as do the corre-
sponding parameters @etTeximage A one-dimensional image of width 2 is
returned tovalues Pixel processing and component mapping are identical to those
of GetTeximage

If resetis TRUE then each minimum value is reset to the maximum repre-
sentable value, and each maximum value is reset to the minimum representable
value. All values are reset, whether returned or not.

No values are modified iesetis FALSE

Calling

Version 1.4 - July 24, 2002

6.1. QUERYING GL STATE 213

void ResetMinmax enumtarget);

resets all minimum and maximum valuestafgetto to their maximum and mini-
mum representable values, respectiviygetmust beMINMAX
The functions

void GetMinmaxParameter{if }v(enumtarget enum pname
T params);

are used for integer and floating point quetgrget must beMINMAX pnameis
MINMAXFORMATor MINMAXSINK. The value of the specified parameter is re-
turned inparams

6.1.11 Pointer and String Queries

The command
void GetPointerv(enum pnamevoid **params);

obtains the pointer or pointers namaoamein the arrayparams The possible
val-
ues forpnameareSELECTIONBUFFERPOINTER FEEDBACKBUFFERPOINTER
VERTEXARRAYPOINTER NORMAIARRAYPOINTER COLORARRAYPOINTER
INDEX_ARRAYPOINTER TEXTURECOORDARRAYPOINTER and
EDGEFLAGARRAYPOINTER Each returns a single pointer value.

Finally,

ubyte *GetString (enum name);

returns a pointer to a static string describing some aspect of the current GL con-
nection. The possible values faameare VENDORRENDERERVERSION and
EXTENSIONS The format of theRENDERERINd VERSIONStrings is implemen-

tation dependent. ThEXTENSIONSstring contains a space separated list of ex-
tension names (the extension names themselves do not contain any spaces); the
VERSIONString is laid out as follows:

<version number <space-<vendor-specific information
The version number is either of the forrmajor_-number.minomumberor ma-

jor_number.minomumber.releas@umber where the numbers all have one or
more digits. The vendor specific information is optional. However, if it is present

Version 1.4 - July 24, 2002

214 CHAPTER 6. STATE AND STATE REQUESTS

then it pertains to the server and the format and contents are implementation de-
pendent.

GetString returns the version number (returned in ¥ERSIONSstring) and
the extension names (returned in tAETENSIONSSstring) that can be supported
on the connection. Thus, if the client and server support different versions and/or
extensions, a compatible version and list of extensions is returned.

6.1.12 Saving and Restoring State

Besides providing a means to obtain the values of state variables, the GL also
provides a means to save and restore groups of state variable®2uhattrib
PushClientAttrib , PopAttrib andPopClientAttrib commands are used for this
purpose. The commands

void PushAttrib (bitfield mask);
void PushClientAttrib (bitfield mask);

take a bitwise OR of symbolic constants indicating which groups of state variables
to push onto an attribute stackRushAttrib uses a server attribute stack while
PushClientAttrib uses a client attribute stack. Each constant refers to a group
of state variables. The classification of each variable into a group is indicated
in the following tables of state variables. The erBTACKOVERFLOWs gener-
ated ifPushAttrib or PushClientAttrib is executed while the corresponding stack
depth iSMAXATTRIB_STACKDEPTHoOr MAXCLIENT _ATTRIB_STACKDEPTHre-
spectively. Bits set imaskthat do not correspond to an attribute group are ignored.
The speciamaskvaluesALL_ATTRIB_BITS andCLIENT_ALL_ATTRIB_BITS may
be used to push all stackable server and client state, respectively.

The commands

void PopAttrib (void);
void PopClientAttrib (void);

reset the values of those state variables that were saved with the last corresponding
PushAttrib or PopClientAttrib . Those not saved remain unchanged. The er-
ror STACKUNDERFLOVE generated iPopAttrib or PopClientAttrib is executed
while the respective stack is empty.

Table 6.2 shows the attribute groups with their corresponding symbolic con-
stant names and stacks.

WhenPushAttrib is called withTEXTUREBIT set, the priorities, border col-
ors, filter modes, and wrap modes of the currently bound texture objects, as well
as the current texture bindings and enables, are pushed onto the attribute stack.

Version 1.4 - July 24, 2002

6.1. QUERYING GL STATE 215

Stack Attribute Constant

server| accum-buffer ACCUMBUFFERBIT
server| color-buffer COLORBUFFERBIT
server current CURRENBIT
server| depth-buffer DEPTHBUFFERBIT
server enable ENABLEBIT

server eval EVALBIT

server fog FOGBIT

server hint HINT_BIT

server lighting LIGHTING _BIT
server line LINE _BIT

server list LIST BIT

server| multisample MULTISAMPLEBIT
server pixel PIXEL _MODEBIT
server point POINT.BIT

server polygon POLYGOMBIT
server| polygon-stipple| POLYGOMSTIPPLE BIT
server scissor SCISSORBIT
server| stencil-buffer STENCIL_.BUFFERBIT
server texture TEXTUREBIT
server transform TRANSFORMIT
server viewport VIEWPORTBIT
server ALL_ ATTRIB_BITS
client | vertex-array | CLIENT_VERTEXARRAYBIT
client pixel-store CLIENT_PIXEL _STOREBIT
client select can’t be pushed or pop'd
client feedback can’t be pushed or pop'd
client CLIENT_ALL_ATTRIB_BITS

Table 6.2: Attribute groups

Version 1.4 - July 24, 2002

216 CHAPTER 6. STATE AND STATE REQUESTS

(Unbound texture objects are not pushed or restored.) When an attribute set that
includes texture information is popped, the bindings and enables are first restored
to their pushed values, then the bound texture objects’ priorities, border colors,
filter modes, and wrap modes are restored to their pushed values.

Operations on attribute groups push or pop texture state within that group for
all texture units. When state for a group is pushed, all state corresponding to
TEXTUREQis pushed first, followed by state correspondind EXTURE] and so
on up to and including the state correspondinGEXTUREK wherek + 1 is the
value of MAXTEXTUREUNITS. When state for a group is popped, texture state is
restored in the opposite order that it was pushed, starting with state corresponding
to TEXTURK and ending withTEXTUREOQ Identical rules are observed for client
texture state push and pop operations. Matrix stacks are never pushed or popped
with PushAttrib , PushClientAttrib , PopAttrib , or PopClientAttrib .

The depth of each attribute stack is implementation dependent but must be at
least 16. The state required for each attribute stack is potentially 16 copies of each
state variable, 16 masks indicating which groups of variables are stored in each
stack entry, and an attribute stack pointer. In the initial state, both attribute stacks
are empty.

In the tables that follow, a type is indicated for each variable. Tal3eex-
plains these types. The type actually identifies all state associated with the indi-
cated description; in certain cases only a portion of this state is returned. This
is the case with all matrices, where only the top entry on the stack is returned;
with clip planes, where only the selected clip plane is returned, with parameters
describing lights, where only the value pertaining to the selected light is returned,;
with textures, where only the selected texture or texture parameter is returned; and
with evaluator maps, where only the selected map is returned. Finally, a “-" in the
attribute column indicates that the indicated value is not included in any attribute
group (and thus can not be pushed or popped RitbhAttrib , PushClientAttrib ,
PopAttrib , or PopClientAttrib).

The M andm entries for initial minmax table values represent the maximum
and minimum possible representable values, respectively.

6.2 State Tables

The tables on the following pages indicate which state variables are obtained with
what commands. State variables that can be obtained using @&wtBboleany
Getlntegerv, GetFloatv, or GetDoublev are listed with just one of these com-
mands — the one that is most appropriate given the type of the data to be returned.
These state variables cannot be obtained usiEgabled. However, state vari-

Version 1.4 - July 24, 2002

6.2. STATE TABLES

| Type code| Explanation
B Boolean
C Color (floating-point R, G, B, and A values)
CI Color index (floating-point index value)
T Texture coordinates (floating-poigt ¢, r, g val-
ues)

N Normal coordinates (floating-point y, z values)
1% Verte, including associated data
Z Integer
ZT Non-negative integer

Zi, Zie | k-valued integerkx indicatesk is minimum)
R Floating-point number
Rt Non-negative floating-point number

Rla:t] Floating-point number in the rande, b]

RF k-tuple of floating-point numbers
P Pasition ¢, y, z, w floating-point coordinates)
D Direction (x, y, z floating-point coordinates)
M 4 x 4 floating-point matrix
1 Image
A Attribute stack entry, including mask
Y Pointer (data type unspecified)

n X type | n copies of typeype (n* indicatesn is minimum)

Table 6.3: State variable types

Version 1.4 - July 24, 2002

217

218 CHAPTER 6. STATE AND STATE REQUESTS

ables for whichlsEnabled is listed as the query command can also be obtained
using GetBooleany Getintegerv, GetFloatv, and GetDoublev. State variables
for which any other command is listed as the query command can be obtained only
by using that command.

State table entries which are required only by the imaging subset (see sec-
tion 3.6.2 are types¢ against a gray background

Version 1.4 - July 24, 2002

219

6.2. STATE TABLES

alow o ‘gz ‘1 ‘0 :dins

- T'9'z | penb ul je} 0S S321ISA JO JaquINN - - vz -
uonINIISU0I

- 192 Japun penb ays Jo sadmIan - - AXE -

- 1972 Jajulod xauan gyy duis sjbuel - - (9 -
alow 10 ‘T ‘0 :duns ajbueln

- 192 Ul Je} 0S S32I1ISA JO JaquinN - - &7 -
dins ajbueln pugyuibag

- 192 B Ul S8211I8A OM] SNOIASId - - AXT -

- 192 saoluan-uobAjodjo JaquinN - - 7z -
uobAjod

- 192 pu3/uIfago apISUI SAOMAA | — - | Axu -

- v'e J21unod aiddns aui - - A -
dooj

- 192 aul| pu3/uibage Jo XalaA 1.1 - - A -

- T°9'Z | 1SNl 8y SXaUaA-auUlyl Sajedlpu] | — - q -

- 192 aul| pu3/uibagil Xa1aA Snoinald - - A -
108[qo

- 192 pua/uibagsaredlpul ‘0 ZUBYM | 0 - 'z -

ainguny 089S uonduosaq anjeA puw) adAL aneal1dn

[emuj

1899

Table 6.4. GL Internal begin-end state variables (inaccessible)

Version 1.4 - July 24, 2002

CHAPTER 6. STATE AND STATE REQUESTS

220

juaund |29z Bejyabp3 | anil | Auesj00gl1eD qg ov1439a3
uaunl | 212 1q pifea uonisod Jgisey | anll | Aueaj00g1aD qg QIVANOILISOHILSVHLNIHEND
uonisod Jasel
uaLNd | ZT ZY}iM pareldosse saleuipiood ainixal |T°0'0'0 Aeo|H199 LX %7 || Sa80003dNLIX3LHILSYHINIHIND
uonisod
uBMND | ZT°Z |481Sel YUM parelidosse xapul 10jod T AJBO|H199D 10 XIANRITLSVHLINIHIND
‘Aabaupes
uonisod
jusund | 212 Jaisel yum pareroosse Jojod [T'T'T'T NJeo|d199 o) HOTODUILSYHINFHIND
‘Aabaupnes
uaund | 212 aour)sIp Jaisel alIn) 0 AJe0|H199 Y JONVISIAUILSYHINIHENO
jua.und | 212 uonisod Jajses Juand | 10'0°0 ATeo|H199 vl NOILLISOdHILSVHLINIHAIND
XOLI9A 1Se|
- 9°'Z Ylim paleldosse Saleulplood ainixa) - - L -
XA
— 92 1SB| YIIM PaleId0SSe Xapul 10]0D - - 1D -
- 9'¢C X8LIBA 1Se| YUM paleidosse 100D - - 0 -
Jua.1INI 1C aleulpiood Bojwaund | 100 AJBO|H199 Yy 31IYNIGHOOD DO INIHIND
‘Aabaune s
Jua.iINg 12 [ewuou uaun)d | 1'0'0 Aeo|d199 N TYWHONINIHHNO
Jusnd 12 S3Jeulplood ainixal Jualnd | T'0°'0'0 Aeo|4199 IX *7 SQYO0D FUNLXILLINIHEND
JuaiIng 12 Xapul 10]02 JuUBLND T AJeOo|4199 10 X3ANILNIHHNO
‘Aabaupes
Jua.uINd 1'C 10]09 Arepuodas juaund | T‘0'0°0 A1BO0|H199 o) {OTOOAYVANOIISINIHYND
‘ANabaupes
Juanno 12 Jojodwaund (T'T'T'T Ale0|H199 o) HOTOILNIHUND
‘Aabaupes
alnguny '09s uonduasaq anep puw) adAL anfeA 199
[eniu] 199

Table 6.5. Current Values and Associated Data

Version 1.4 - July 24, 2002

221

6.2. STATE TABLES

ARelle-xalan | 82 Aelle xapul ay} 03 Ja1uI0d 0 ABIOIDD | A YILNIO AVHHY X3aNI
Aelje-xauan | 82 S92IpuUl UBBMIB(BPLIS 0 Asbawpeo | L7 3AIYLS” AVEHY X3N]
Aelre-xalan | 82 saolpul Jo adAl 1vO14 nebawe | Tz JAAL AV X3ANI
Aelsle-xalan | 8¢ a|qeus Aele xapu| as|ed pajgeu3s| g AVHHYXIANI
Aelre-xauan | g8z Apiie 10j02 Alepuodas ay} 0} Jajuiod 0 ABWIOI®D | A || ¥3LNIOd AvauvR0100AuYANOD3S
Aelre-xalaA | 82 | SI0]09 Arepuodas usamiag apiis 0 nebawnes | 7 3AILS” AVHEVHOTOOAYVANOD3S
suauodwod
Aelre-xauan | 8'Z 10j02 Atepuodas jo adAl | 1vO1d nebawen | 87 FdAL AVHHYUOTOOAIYANOOIS
NCIETY
Aelire-xauan | g'z | 1ad syjusuodwod 10]0d Arepuodas € nebapes | L7 32IS” AVHHVRI0T00AYVANOD3S
Aelre-xalan | 8¢ a|qeus Aelle 10|02 Alepuodas as|ed pajgeu3s| g AVHHYHOIOIANYANODIS
Aelre-xalan | 82 Aelre 10|02 8y} 0} J8uI0d 0 ARIOdI®D | A UFLNIOd AV HIOT0D
Relje-xauan | 82 $10]09 UdBaMIaQ BpIIS 0 Asbawpen | L7 3AIYLS” AVEEYHOTOD
Aelle-xalan | 82 susuodwod 10jo9 Jo adAL 1vO14 nebawen | 87 AL AVHIVHOT00
Aelle-xalan | 82 xauaA Jad sjusuodwod 100D % nebawes | 7 375" AVHIVHOT0D
ARelle-xalan | 82 a|qeus Aelre 10]0D ased pajgeuds| qg AVEHVHOTOD
ARelje-xalan | 82 Ae.re p1ood 6o} ay) 03 Jaiuiod 0 ABWIOIDD | A Y3LNIOd” AVH Y 3LYNIG000 D0
ARelle-xalan | 82 spJood Boy usamiag apiis 0 nebauneo | 47 301415 AVHIY I IYNIGHO00D0S
Aelsle-xalan | 8¢ sjuauodwod piood Bojy jo adAL 1vo14 nebawpes | ¢y 3dAL AVHUVEIYNIGHO0IDOH
Aelre-xauan | 82 a|qeus Aeile p1ood Ho- as|e pajgeu3s| qg AVHHYELYNIGH000 D0
Aelje-xalan | 82 Ae.Je rewiou ay 03 J81UI0d 0 ABIIOIDD | A Y3ALNIO AVHHY TYWHON
Aelre-xauan | 82 S[ewJou Usamiag apuls 0 Aebawpes | L7 3AIHLS™ AVHY TYWHON
Aelsle-xalan | 8¢ SaleulpJood [ewlou Jo adAL 1vo14 Aabaes | ¢z IdAL AVHUY TVNHON
Aelre-xalan | 8¢ a|qeus Aelle [ewlioN as|ed pajgeu3s| g APV TYINHON
ARelle-xalan | 82 Ae.e xalaA sy 0} Jajulod 0 ABWIOIDD | A YILNIO AVHUY XILITA
ARelje-xauan | 82 S92I1JBA UBBMIB] BpIIS 0 Asbawpen | L7 3AIYLS” AVEHY X3 L3N
Aesre-xalan | 82 SaleuIpio0d XalaA Jo adAL 1vO14 Adbawes | Tz FAAL AVHEV XALIIN
Aelre-xauan | 82 xalaA Jad sareulplood 1% nebawes | 7 321" AVHY X3 LHIA
Relle-xalan | 82 d|qeus Aeite xolaA as|e4 pajgqeu3s| g AV XTI LA
Aelje-xalan | 'z | 10199]8S HUN 81NIX8) 9AIdR UBlD |03dNLIX3L | Mebawpes | *exy FUNDALIALOY INTITO
ainguuy "08S uonduasag anjep puwd adAL anjeA 199
[enul 199

Table 6.6. Vertex Array Data

Version 1.4 - July 24, 2002

CHAPTER 6. STATE AND STATE REQUESTS

222

Aesre-xalan | 82 Aelre Bejy abpa ayi 03 J8iuI0d 0 AIBJUIOHI9D) A ¥3INIOd" AvHdY 9V 143903
Aelre-xauan | 82 sbe|} abpa usamiag apiis 0 nabaeo 7z 3011 VetV OV 143903
Aelre-xauan | 82 a|qeus Aele Bey abp3 | asjeq pajqeuds| q AVEYY OV 143903
Kelre
Aesre-xauan | 82 9Jeulpliond ainixal ay) 0] Jajulod 0 AI91UI0d1oD) AX*¢C HILNIOd™ AVHIVTHO00FANLXAL
Aelje-xaldA | 8'Z $91euIpJo0d aInixa) Usamiag aplis 0 ABDBBIUNIBD | | ZX %7 || 30MIS AVHuvTHO00IANIXAL
Aelle-xalon | 82 SaleuIplood ainixal Jo adAl | 1vO1d | AMebawpes | Tz x x g JdAL AVHEYTHO000TUNLXAL
Aelre-xauan | 82 wawala Jad sareulpiood 1% AabBaueD | L ZX x¢ 371" AVHYTHO0FUNLXAL
Aelre-xalan | 82 | 9|qeus Aele a1euIpI00D 8INIXa) | aseq pajqeuss| gX ¢ AVHEVTHO0OFUNLXAL
alnguny "08S uonduosag anjep puwd adAL anjeA 199
feniu] 199

Table 6.7. Vertex Array Data (cont.)
Version 1.4 - July 24, 2002

223

6.2. STATE TABLES

pajqeus
B|qeus;uojsuen | T2 aue|d Buiddijo Jasn yiz as|ed pajgeu3s| gx *9 ENVIddITO
S1UBIDIYB0D
wiojsuen IT'¢C aue|d Buiddijo 1asn 0'0'0'0 aue|ddi|D199 P X %9 “ENYIddITo
Jojuo
B|qeuUs/wIojSURI | £0T 2 PBuledasal [ewlou uaun)d as|e4 pajqeu3s| q TYWNHONTTVOSIY
1JO/UO uonezijewlou
B|qeusjwIojsUel | £0T'2 [ew.ou Juain)d as|ed pajgeu3s| q 3ZITYWHON
wuojsuen 2012 apow xuyew juaund MIIATIAON | ABbawpeo v 300N XMLV
Jaquiod
- 2012 MorlS Xujew alnixal T nabaupeo LIX*G H1d3aMOVISUNLXAL
Ja1iod
- 2°0T'2 | Yoels xuyew co_aow._ohn_ T Emmmuczmo +Z HL1d3AMOVLSNOILOICOdd
Jaquiod
- Z2°0T°2 Poels xuyew MalA-|]apoN T nabapen A HLdIAMOVLS MIINIZAOW
Jaquiod
= €9'¢ oe]ls Xujew J10j0D T INELEIIEDS) +Z HLdIAMOVLS XIYLYNHOT0D
uodmain T0T'Z | el Jeau abuel yidag T'0 ARO|4199 Y XT 39NVHHLd3a
1odmain T'0T'Z |1ua1xa 7 uibuo Luodmaln | T'0T Z99S IVEEIVIELS) 7 XY LHOdM3IA
(XIYLYINFENLXILISOdSNYHL)
- 20T¢ Jorls Xujew alnixa | \Q:cm_u_ Aeo|q199 p X *TX * ¢ X141V ZENLXAL
(XI4LVINNOILOICOYdISOdSNYHL)
- Z'0T'Z | Xoels Xurew uonoaloid Anuap| AleO|4199 X *T XIY1YIANOILOFCOMd
(XI4LYINMIIATIAONISOdSNYH L)
- 2°0T°Z |oels Xurew MaIN-|ISPOIAN Amnuap| Neo|d1e9 TN X * T8 XISV MIINTIAON
(XI4LYWHOT1003SOdSNVHL)
— £9'¢ 3orlS Xujew lojod Anuap| AlRO|H4199 P X *T XIH1VIN 0100
alngLny 098 uonduosag anfea puw) adAL anjeA 199
[emu| 199

Table 6.8. Transformation state

Version 1.4 - July 24, 2002

CHAPTER 6. STATE AND STATE REQUESTS

224

Bunubn | 2€T'C Bumasiaponapeys HLOOWS nebawpes | L7 TIA0WIAVHS
a|qeus/bo} | 6'¢ pajgeus wns 10jod Ji anJit as[e4 pajqeuss| g WNSHOT00
uoine|noes

foy ore foy 1o} 81eUIPI002 JO 82IN0S |H1dIANINOVYHL | Mabsiunes °z JOUNOSAYNIGHO0ID04

a|qeus/boy | 0TS pajqeus Hoy yi ana] as[e4 pajgeuds| g 204

Boy 0T'€ apow Bo4 dX3 nebapes | fz 3aowo04

boy 0TS pua Boj reaulq 0T Ne0|H199 Yy ANz D04

Boy 0TS uels Boj Jeaul 00 ARO|4199 y 1MV1SDOA

Boy oT’S Ansuap Boj renuauodx3 0T AeO0|H189 1 ALISN3AD04

Boy 0oT'S xapul 6o4 0 ARO|4199 10 X3ANIDOH

Boy oT’S 10j02 6o4 0‘0'0'0 ARO|4199 D 40100904
angLny 098 uonduoasag anjeA puw) adAL anfeA 199

Y 199

Table 6.9. Coloring

Version 1.4 - July 24, 2002

225

6.2. STATE TABLES

Bunybiy TETC |0J3u02 J0j0D dOTOD IT1ONIS INELEIIETS) @7 || 10YINOOHOTOO THAON LHOIT
Bunyby

Bunybi TET'C papis-om] asn as|eq AUBD|00g18D q 3AISTOMLT3A0W LHOI

Bunybi T€T'C [e20] S| JaMBIA as|eq AUB3|00g199) g ¥IMIIATYOOT 13A0ON LHOI
10|02

Bunyby T'ET'Z | 9uddsjusiquy (0'T'20'20'20) WEEIEDR) o) ANSIBWY TIAON LHOIT
|elarew
10 Juauodxa

Bunybi TEeT2 rejnoads 00 NelRIBINI®D | ¥ X T SSANINIHS
10]02

Bunyby TETC Jew aAissiwg (0'T'0°0'0°0'0°0) NeUBIBNIBD | D X T NOISSING
10]02

Bunyb T'€T'Z |[eusrew Jenoads (o0'T'0'0'0°0'0°0) NeldIeNI®D | D X T ¥VINO3dS
10|02

Bunyby TET'Z | [eusrew asnyiq (0'T'8'0'8°0'8°0) NJeUBIBNIBD | D X T 3snadia
10]0o

Bunyby T'ET'Z | [leuarew jusiquy (0'T'2°0'2°0'2°0) A[eUBIBNIBD | D X ¢ AINSIEWY
Bumjoes) 10j02 Aq

Bunyby €'€T'Z | paraye (s)aoed MOVEANVINOYS WELRIUNED) ¢z 30V4 WRIALYA 010D
10|02
ua.nd Bupjoen
soluadoud

Bunyby €EeTe [eu¥eiN | 3SNA4IdUNVLINIIGNY | Aebaes ‘z ALYV IVITYAHOTOO
pajqeus
sI Bupoen

alqeus/bunybl |€€T'Z 10|09 J1 dnIL as[e pajqeuss| q VIHYAHOTO0O
pajqeus

alqreus/bunyby | T'eT°Z | SIBunyby y eniL asled pajqeuls| q ONILHOIT

ainguNy 093 uonduosaq aneA puwd adAL anjeA 199
[emu| 199

Table 6.10. Lighting (see also Talfle7 for defaults)

Version 1.4 - July 24, 2002

CHAPTER 6. STATE AND STATE REQUESTS

226

Bunyby
Bunyby TETC Xapul 40|02 Joj “'spue "p "D T'T'0 N[eUBIeNIBD | Y X € X S3XIANRIOT0D
alqeus/bunybl | T'ET'Z pajqreus 21yby j1 aniy as[ed pajqeuls| X *8 “LHOI
Bunyby TE€TC b1 jo 3jbue 10ds 0°08T MIYBImeo LU X * 8 4401N210ds
Bunyby TEeT'e w61 Jo usuodxa 1ybipods 00 NIYBITI99 LA X %8 ININOdXT10dS
Bunyby TETC ay6i| jo uonoalip ybipods | (0'T-'0°0°'0°0) MIYBImeo ax *8 NOLLOFHIA10dS
Bunybiy TETC 10108} “UBNE dnERIpeNd 00 ANWYBINBD | Y X *8 || NOUVANALIYOLVHAYND
Bunyby TET2 101o®} "uaNe Jeaul 00 AIYBIMLeo LU X %8 NOLLYNNZLLY ¥vaNI
Bunypiy TET2 10]19€) "UsNe JURISU0D 0T MIYBImeo 44X %8 || NOLVNNILLVINVISNOD
Bunybiy TETC 1ybi| Jo uopisod (0°0°'0°'T'0°0°'0°0) | MBIMED dX *8 NOLLISOd
Bunybi TETC w61 Jo Ausuajul sejnoads G'Z 99s Aiybimeo DX %8 ¥VINO3dS
Bunyby TETZ aybi Jo Aysusiul asnyig G'Z 99s NIYBITI99 DX 8 3snaHia
Bunyby TETC aypif Jo Ausuajul uaiquy (0°T'0°0°0°0°0°0) | AybImeo DX 8 INZIBNY
aInguny 093 uonduosaq anfea puwd adAL anjeA 199
leniuj 199

Table 6.11. Lighting (cont.)

Version 1.4 - July 24, 2002

227

6.2. STATE TABLES

a|qeusjuobAlod | z'g'¢ a|qeus a|ddns uobAjod | asied pajqeuds| qg I1ddILSNODATOd

a|ddns-uobAjod | g'¢ a|ddns uobAjod ST | 9ddnsuobAjodies T -
uoneziiaisel apow

a|qeuajuobAjod | g'g'¢ 77140} 3|qeuS 189S0 uobAjod | asjed pajqeu3s| q T114135340NOOATOd
uoleziialsel spow

a|qeusajuobAjod | gg'e JNIT 9|geus 19syo uobAjod | asfed pajgeu3s| q ANIT1ISIHONODATIO
uolnezialsel spow

a|qeusjuobAjod | g g€ 1NIO&P! 91qeus 19syo uobAjod | asied pajgeuds| g INIOd13S430NODATOd

uobAjod G'G'E SHun 1asyo uobAjod 0 A1R0|H199 v SLINN13SFHONODATOd

uobAjod G'Ge 10198} 19510 UoBA|j0d 0 AJRO0|H199 Yy ¥O10V413S440NODATOd
(oeq ®

uobAjod #'G'€ | u04)) apow uonezusisel uobAlod | 1114 Aabauen €7 X ¢ 3QONNODATOd

a|qeusjuobAjod | g€ uo Buiselfenue uobAjod | asie4 pajgeu3s| g HLOOWSNODATOd
Jojeoipul

uobAjod T'g¢e MOD/MD d2ejiuod) uobAjod | MDD Aabaunen ty 30VINOYA

uobAjod T'G'E suobAjod Buioey yoeqauoly IND | MOve Aabaueo €7 300WZ0V4TIND

a|qeusajuobAjod | T°g'€ pajgeus Bulno uobAjod | asjeq pajgeu3s| g 30V 1IN0

8|geus/aul| Zre a|qeus ajddis auiq | asfed pa|qeu3s| q F1ddiLs™aNN

aul| Zve jeadal ajddns aui T Aabaunen A 1v3d3¥I1ddILS NI

aul| Ve a|ddns auiq ST Aabaueo 4 NY311Vd31ddILS INIT

a|geus/aul| v'E uo Buiserenue aui] | asjed pajqeuss| g HLOOWS 3NIN

oul| '€ Yipim aui 0T ATeO|4199 Yy HLAIM™3NIT

wiod ee SIUSIDIYS0I uonenuany | 00T Ae0|4199 44 X ¢ || NOLVNNILLYIONVLSIQLNIOd

HC_OQ c'e uollenuane mr_n__m 10} pjoysaiyL 0T Aeo|d189 44 3ZISTIOHSIHHL3AVL LNIOd
'S9ZIS Julod Ylo0ws pue pasele
"xew Juspuadap ‘|dwi a8yl Jo "“Xe

wiod ce '97IS iod wnwixew pajenuany 1 AJeo|4199 oy XYW3ZIS"INIOd

iod e 9zIs julod wnwiuiw payenualy | 00 ARO|4199 o NINZZIS"LNIOd

s|qeuspulod o uo Buiselenue wiod | asfe4 pajqeuss| g HLOOWS™LNIOd

HC_OQ c'e 9ZIS Julod 0T Aleo|q199 +d 3ZIS"INIOd

ainguny 093 uonduosaq anen puw) adAL anfeA 199
[emu| 189

Table 6.12. Rasterization

Version 1.4 - July 24, 2002

CHAPTER 6. STATE AND STATE REQUESTS

228

a|dwresninw eTv anjeAysew abelanod oAUl | asjeq |Auesjoodies | g L43ANIZOVEINODTTdNYS

a|dwesninw eTv anjeA ysew abelanod T Ale0|H189 Y ANTYAIOVHINOI T TdINYS
blgeus/eidwesninw | £ 11 abelanod Alipow 01 sel | asred pajgeu3s| g 39VHINOOTTdINYS
p|qeus/aidwesninw | €T wnuwixew ol eyde 189S | asjed | pajqeuds| q ANOOL VHA TV ITdIYS
blqeus/eldwesiinw | €T eydfe wo.y abelanod Ajpol | asjed pajqeu3s| g 39VHIN0D 0L VHA TV I TdNYS
b|qeus/aidwesninw | T°Z'€ uonezuaisel sidwesnny | anul pajgqeuss| g F1IWYSILINN

alngLNy 095 uonduosaq anfeA puw) adAL aneA 199

[eniu] 199

Table 6.13. Multisampling

Version 1.4 - July 24, 2002

229

6.2. STATE TABLES

P 0’| 1e abewl ainixa)

- me QQE QDSO OOGH— Z— H.w.mmmw QDGE_XQPHOO N X U Z INILVOIAN dVNIENDIINLXIL
pojie wmm_.t_ 91N)X3al

- ._uwm QmE OQSO modmu— zZ4+ ._”.w.m\,wmw wmde_thluwo N X U Z3INILISOd dVINZaNO3dNLX3L
‘Po’|1e mm@E_ 91N)X3al

- '8’ dew agno aoey fi— | 7'g'coas | abew|xal199 I Xu A"3AILYOIN VN ZEND TUNLXIL
0’| e abew ainixal

- 1'8'E dew agno ade} fi+ | T'g'caas | abew|xal199 I Xu AIAILISOd dVNIENDTANLXAL
pojie wme_ 91N1Xal

- me Q@E OQ_)_O @OGH_. Xr— ._”.w.mwmw WDGE_XOPHOO N X U X AALLYOIAN dVINZ3aNO3dNLX3L
po’|ie mmm_.c_ 91N)X3al

— 17'8'€ dew agno aoe] T+ | T'g'coas | abew|xalles I Xu XIAILISOd dYINIENOTANLXIL
rpo

- 8'c Je abewl ainxa) g | g'ceas | abew|xalle IXu Q= IuNLXaL
dvINFANO3dNLX3Ll

2INIXa} TT'8°€ | 01 punoq 199lgo ainixal 0 Aabajupes LIX*T dYA 38N ONIONISTHNLXAL
ar3adn.ix3Lt

21N1X3al Z1'8°¢ | 01 punoq uow.—QO 9INIXal 0 >‘_wmwuc_”_mmu 47 X EX*xQ Az~ ONIANIgIINLXIL
pajgeus si mc_hzuxmu

elgeus/alnixal | ET'8°¢ dew o2Qqno JI ani| oS|ed pajqeuds| gX *xg dvW3aN0FINLXIL
€10 ‘g ‘T Sl pajqeus

elgeus/alnixal |GT'8'¢E Sl OC_‘_DHXQ_ axjienil os|eH pPajgeuds| g X EX %G az3dnLx3aL

angLny EIS uonduosaq anea puw) adAL anfeA 199
femui 199

Table 6.14. Textures (state per texture unit and binding point)

Version 1.4 - July 24, 2002

CHAPTER 6. STATE AND STATE REQUESTS

230

uoneiauab

ainxal | 8'8’¢ dewdiw onewolny 3S7v4 Ja1oweredxalla g xu dYNAIWTLYHINTD
uonouny

aInxal |v1'8'E uosuedwod ainxal | IvNO3I1 ALIBlBWERIRdXD] 18D Sy X U ONNATUVINOITUNLXAL
apow

aInmxal |¥T'8'E uosLedwod ainixa] 3INON ALISlBWRIRdX3] 199 Ty X U J0OWTHVANODTANLXAL

9.1N)X3] g'8’'e 9poW ain)xal ann_ JONVNIINNT | AllSlsweledxa] 199 €7 XU IAOWTHINLXILHLILIA
Hlqozagselq

ainxal | 8'8°¢ [Te18p JO |9A8] 8InIXa] 00 AJiBloweredxa| 199 g xXu SvIg-aoT3uNLXAL
ELE]

2Inxa) 8'c | Aeure ainixal WNWIXeN 000T AJBlBWEeIedXD]19D) | 7 X U TIAIT XYWIANLXAL

2IN1x8) 8'c Aelre ainixa) aseg 0 NJS1OWRIEdXDI18D) | 7 XU TIAITISVETANLXAL

2In1xa) 8'C | |re1ap JO |9AS] WNWIXe 000T AJJaloweredxa| 199 g xXu Q0T XYW 3dNLX3L

2IN)1xa) 8'c [1e18p JO |9AS] WNWIUIA 000T- AJldloweredxa| 199 g xXu QOT NINZYNLXAL

aImxal |ZT'8’S Aouapisal alnxa] | ZT'8'€99S | AldIBWRIRGX3[1899) g xu INZAISTITUNLXAL

aInmxal |zI'8’S Aoud 1098lgo ainmxal T AJIB1BWeRIRdX8118D | [X U ALIMOIMJZANLXAL
(Ajuo sainxa1 Qg)

ainxal | 2'8°¢ apow deim 4p1oodxal | 1v3dd3y laroweredxa189 Sz xu W dVIMIINLXAL
(Ajuo sainixal
dewsaqnd ‘qg ‘ae)

ainxal | 2'8°¢ apow deim pioodaxal | 1v3d3d Jaroweredxa1a9 Sz xu Ldvam3dunIxaL

ainxal | 2’8’ apow deum sploodxal | 1v3ad3d Jajoweredxallag Sz X u SdvEMIANLXAL
uonouny

aInxal | 6°'8°E uoneoyiubew ainixal 8'co9s Ja1oweredxal1a9 Ty X U YA OV BUNLXAL
uonouny

ainxal | 8'8°¢ uoneILIuIW SINIXS] 8'c99s la1oweredxal1a9 97 X U U3 NINZENLXEL

aIn)xa) g'c 10]09 Japloq ainixa] 0'0'0'0 Jajoweredxallan D XU ¥0100UIAUOTIANLXAL

alnguuy "09s uonduosag anjep puw) adAL an[eA 199
eyl 199

Table 6.15. Textures (state per texture object)

Version 1.4 - July 24, 2002

231

6.2. STATE TABLES

abew
aInixa} passaldwod

- e'ge Jo Aw mtnn:c_v 9ZIS 0 lolsweled|anaTXa] 19D +Z XU 37I1S"39VNIAISSIUINODIANLIXIL
Jewlo}
[eusaiul passaldwod e

- £'g'c sey abewl ainixal Jl onil | asjed | loloweled|pAaxXal1e9 | g X U Q3SSTUNODTUNLXAL
uonnjosal

- 8'c yidap s,abewi ainixa) 0 |Jo1oWeled|oAdTIXal1eD | 4 Z XU 37ISHLd3aTANLXAL
uonnjosal

— g8’ |Ausuaiul s,abewi ainixal 0 lajaweledaAaxalles) | Lz X u 37IS"ALISNILNIFHNLXAL
uonn|osal aoueUIWN,

- 8'c s,abew! ainixal 0 |Joloweled|onaIxalleD | 4 Z X u 37IS"IONVNINNTIANLXEL
uonnjosal

- 8'c eyde s,abew! ainixal 0 |loloweledoAaxalles | L7 X u 3715 VHd TV 3dNLXaL
uonnjosal

- 8'c an|q s,abewl ainixa) 0 |J91BWeRIRdIOASTIXaII®D | 4+ Z XU 3ZIS"3NETANLXAL
uonnjosal

- 8'c uaalb s,abewi ainixa) 0 |JolowelredaAaxalles | Lz X u IZISNIFYOTUNLXAL
uonnjosal

- 8'c paJ s,abew! ainixal 0 |JolowelredpAaxalles | Lz xu IZISaFRIIUNLXAL

Tewuoy abew (SLNINOJWOD TUNLXIL)

- 8'c | reulaul s,abewi aInixa) T lalaweledanaxallen | *ery x u LYWHOS TYNSILNIFUNLXIL
uipim 1apioq

— 8’ pauloads s,abewi ainixal 0 lajaweledaAaxalles) | L7 X u ¥3QHOEIUNLXAL
yidap payioads

- 8'c s,abewl ainxal g 0 |Jo1BWeled|onaIxalleD | 47 X u HLd3a3uNLXaL
wbray payroads

- 8'c s.abew ainxal Ag/Az 0 |JoloweledpAaxalle | L Z X u LHOIZHZUNLXAL
Uipim

— 8'c paulnads s,abewi ainixal 0 lajaweredanaxalles) | L7 X u HLQIM3HNLXAL

ainguuy '98s uonduoasag anfen puw) adAL anfeA 199
[eniu| 189

Table 6.16. Textures (state per texture image)

Version 1.4 - July 24, 2002

CHAPTER 6. STATE AND STATE REQUESTS

232

aInxa) eT'8'c Buleos Jauiquioo-isod eyd)y 0T AJAUTX31199 X %G ITVOS VHA Y
aInxal €T'8'E Buijeas Jsuiquod-isod goy 0T AAUTX3]199) X X 31v0s89Y
alnxal €1'8'¢€ Z puelsado eydly | YHATIVDHES | AlAUTXS1199 Ty X % VHdYZaNVH3do
aInixal €T'8'E T puesado eydly | YHATVDHES | AlAugxal199 Cyx xq VHAYTANYY3dO
alnxal €1'8'¢€ 0 pueisado eydly | YHATIVDHES | AlAUTXS1199 Ty X % VHdYDANVH3dO
aInixal €T'8'E Z pueiado 99y | YHAIVDYES | AAugxal1e9 VX xg 89Y2ANYHIdO
aIn1xa) €T'8'E T puesado 994 | HO10DDYUS | AlAUTX81189 VX x g A9YTANVHIdO
aInixa) €T'8'E 0 pueiado g9y | HOT0ODDHUS | AAUTXa1199 VX xg 894DANYHIAO
9IN)xa) €T'8°E Z9oinoseydly | INVISNOD | Aaugxal199 E7X x VHdvZ304N0S
aIn1xa) €1'8'E T 9oinoseydly | SNOIATYd | AlauTxal199D €7 X % VHdYT304N0S
9IN)xa) €T'8°E o 9dJinoseydly | IHNLX3IL AIAUTXB] 199 E7X % VHd¥0304N0S
aIn1xa) €T'8'E 292In0sS g9y | INVLISNOD | Alaugxal1eD €7 X % 8942304N0S
2.N]x3al €1'8'¢ T 92IN0sS g9y | SNOINTHd NAUTX3] 199 E7X % g941308N0S
aIn1xa) €T'8'E 092in0s g9y | IHNLX3IL ANIAUTXB] 199 €7 X x 7 894D30UN0S
2IN]x3al €1'8'¢c uonouny Jauiqwod eydly | 31v1NAON NAUTX3] 199 97X % ¢, VHJ IV aANIGWOD
aIn1xa) €1'8'E uonouNy JauUIquwod 99y [J1VINAOIN | AlAugXxal189 87X x 894 INIANOD
O pue 'y
84n1xa} ¥'0T'Z |'L ‘S 40}) usbxa) 4o} pasn uondung | YYIANITIAT | NUBDXLI0D | “Z X FX * g || FAOWNIOFuNLXAL
(O pue 'y ‘L 'S I0))
2In1xa) 7'0T'Zz | Swaloa0d Jeaul| 10alqo uabxal | 0T zZoos NUBDX31199 | 1] X I X *¢ aNVId103rgo
(O pue 'y 'L s i0))
aInxal #°0T°Z $wa101909 uonenbs aueid usbxal | 0T zZ99s NUBDX3118D | 1] X FX *¢ INVId3AT
plgeusjaInxal |#°0T'2 | (O 40 ‘Y ‘1 ‘S sippajqeus uabxal as[ed pajqeuds| g XFX*g TNIDTUNLXAL
SUNTIY
2In1xa) 8'8'E Sselq [e1ap JO |9A8] aInIxa] 00 AAUTX3]199) YX *7 SVIg"a0T3uNLXAL
aIn1xa) €1'8'E J0J09 JUBWUOIIAUB dINIXa L 0‘0‘'0'0 AAUTX31199) OX %7 Y0100 ANTZHNLXAL
21N]xal €1'8'¢c uonouny uonesldde aumxal |31V 1NAOWN AIAUTX3]199 97X % ¢, 3JAOWANIFHNLXIL
aIn1xa) 1C 101999 HuUN aINIXal MY | 03dNLX3IL IVELEIELD) *Cry JUNLXAL IAILOY
angLny 089S uonduosaq anfeA puw) adAL an[eA 199
[emui 199

Table 6.17. Texture Environment and Generation

Version 1.4 - July 24, 2002

233

6.2. STATE TABLES

1ajing-10]09 6TV uonouny do 21607 AdOD nebapneo | 9y 300WdODID0T
a|geua/iaung-10j0d | 6T’ pajqeus do 2160] 10j0D as[e4 pajgeuds| g d0DI90THOT0D
9|geua/Iayng-10j0d | 6T’ pajgeus do 2160] xapu| as[e4 pajgqeuds| qg (dODIDOT:0'TA) dO"OID0T X3ANI
a|geua/iaung-10j0d | 8T’ pajqeus Buuaylg anil pajqeuds| g ¥3HLIa
13}ng-10]02 LTy 10]02 pug|q JueISU0D | 0'0'0'0 Neo| 199 0 ¥40100°aN8
18)ng-10j0d LTy uonenba Buipus|gd |AAVONNL | Mebauneo | 7 NOLYNOT AN 18
layng-10j09 LTV uonouny y 1sap bBuipualg od3z nebawpen | Ty VHd Y LSa-aNag
184nQ-10|03 LTV uonouny g9y "1sep buipusig 0od3z ngbapes | Ty (LSAUNTTE:E'TY O LST ANITE
layng-10j09 LTV uonouny y 8ainos bBuipus|g aNO nebawnen | ¢y VHATVDYS NI 18
layng-10j02 LTV uonoun} g9y aainos buipuag IaNO Aabaunen | 9Ty || (ousunalgeTA) aouDdys aNae
9|geus/iayng-10j0d | L' T’ pajqeus Buipualg as[e4 pajgqeuds| g anag
Jayng-yidap 9TV uonouny 1sal Jayng yidaq SSa Aabauen 87 ONN4HLd3a
a|geua/iayng-yidep | 9T pajqeus Jayng yidaq as[e4 pajgeuss| g 1S31'H1d3a
Jayng-1ouals STV uonoe ssed Jayng yidap 1ouas d33a Aebaen 87 SSVAHLd3ASSVdTIONILS
Jayng-|1ouals STv uonoe |rey Jayng yidap |1ousls d3al nabauen 87 VA HLdIASSYAIIONILS
Jagng-|1ouals STV uonoe |re} [19UalS d3am Aabalunen 87 JIvATIONALS
18Jjng-[1ouals STV an[eA agualajal |19UslS 0 Aabajuen 7 434IONALS
Jagng-|1ouals STV yseuw |1ouals ST Aebaneo | Lz MSYW INTYATIONILS
1ayng-|1ousls STV uopouNy [1OUBIS | SAVMTY | AdBapes | 87 ONN4IIONALS
B|geUa/IaYNg-|Ioudls | G T pajqeus Buljouals as[e4 pajqeuds| g 1S3LTIONALS
layng-i0j02 vy anjeA aoualajal 1sa) eyd|y 0 Aebauneo | LYy 4IRS VHAY
13yng-10]02 VY uopounisaleydly | SAVMIY | AebBaupes | 87 ONNALSIL VHI Y
S|gqeus/ising-10|0d | ¥'T'y pajgeus 1sal eydly asled pajqeu3s| q 183U VH Y
10sSI0S 2TV X0Q l0SSI0S | Z'T'¥99s | aebaupeo | 7 X ¥ XO880SSI0S
3|geud/I0SSIoS 2TV pajqeus Bullossios as[e4 pajqeuds| g 1S3180SSI0S
gLy '09S uonduosaq anjeA puw) adAL anjeA 199
[eniuj 199

Table 6.18. Pixel Operations

Version 1.4 - July 24, 2002

CHAPTER 6. STATE AND STATE REQUESTS

234

lagng-wnooe |2y an[eA Jea|d Jajing uoneNWnooy 0 A1R0|H199 LU XT INTYA VIO WNDY
Jayng-j1ouals | €21 anfeA Jea|d |1ouUa1S 0 AabajueD Z 3INVA¥YITONIONILS
layng-yidep | £z2'v anfeA Jea|d Jayng yidag 1 JNETE D) oy 3INTWA¥YITOHLAIA
(epow xapul
Ja)ng-10j02 | €21 10]02) anjeA Jes|d Jayng 1ojoD 0 ARO|419D 10 3INVA¥YITO X3ANI
(epow
18)ing-10j0d | €°C'V vda9Oy) anjeA Jeajd Jayng 10jod | 0'00'0 Aeo|418D O INVAEVITOU0T0D
Jayng-j1ouals | 'z ySewsllm 1aynd [1ouUa1S ST A8baupeD A NSYWI LM TIONILS
Jayng-yidep | z'z'v Bunum 1oj pajqeus Jayng ydaq anil | Aueajoogias q NSYWILIMMHLIA
1alNg-10109 | Z'Z2'v | V10 ‘g ‘O ‘Y ‘sa|qeus alluim 10joD anil |Auesjoogle | g X ¥ SSYWILRIMHUOTOD
Jayng-10j09 | Z'Z'v)SewWwa)LIM Xapul 10]0D ST AabajueD 7 MSYINILIM XIANI
laung-10j00 | T'2'Y Buimelp 10) pa1d9|as sialng | T'Z'fe8s | Asbaiuen 017 d344N8MVEa
gLy 089S uonduosaq anjeA puw) adAL anfeA 199
[emuj 1¥9

Table 6.19. Framebuffer Control

Version 1.4 - July 24, 2002

235

6.2. STATE TABLES

[axid €9¢ SVIg %Jo anjeA 0 Aeo|418D 154 svig®
H1d3dio YHdTV IN1aN3I3Ido

[axid €9¢ a3y st T 37vDS 740 anjep T Aeo|f1e9 q VoS

[oxid €9¢ 135440 X3ANI40 anjeA 0 Agbauneo Z 1354407X3aNI

[axid €9¢ 1dIHS X3 ANIJ0 anfeA 0 AaBaueo Z L3IHS™X3aNI

|joxid £'9'¢ | paddew are sanjea [1oua3s JI anJ] | as[ed | Aueajooglan) qg TONILS dVIN

jaxid £'9¢ paddew aJe s10j02 JI ani] | as[ed |Aueaj00gleD g ¥OT10D"dVIN
alois-jexid | z'e'y LININNDITVYADIVYIO0 anjea 14 AsBaueD +7 ANIWNDIVHOvd
alois-jaxid | z'e'y ST13aXId” dIXSHIOVI0 anjepn 0 Agbawuneo | 47 STAXId NS HOv
alois-jaxid | z'e'y SMOY” dIXMSHIV40 anjeA 0 Aebae | 7 SMOY dINS OV
alois-pxid | z'e'y HLONITMOINDVI0 8njepa 0 Agbauneo | 4z HLONITMOXYOvd
alois-pxid | ze'y SIADVINI™ dIXSHIVIO0 BnjeA 0 Asbae | 7 SIOVAIAINS OV
alois-pxid | z'e'y LHOIFHIOVINIXDV 4O anjep 0 Agbawuneo | 4z LHOIFH IOVIINOV
alois-jaxid | z'e'y 1SdId9STHIVdI0 8N[eA | 8s[ed | AUeS|00g19D q 1SuI"8STHOvd
alois-pxid | z'e'y SILAGAVMSHIV IO anjep | 8sjed | AuesjoogleD q SILAGAYMS MOV
alois-jaxid | T°9°¢ ININNDITWIDVINNIO BNnjeA 14 Asbae | 7 LNIWNOITVHOVANN
alois-jaxid | T°9°¢ S13XId” dIASHDVANNJO0 BNnjeA 0 Agbawuneo | 4z STAXIAINSHOVAINN
alois-lexid | 7'9'¢ SMOY” dISAOVANN40 anjeA 0 Asbae | L7 SMOY dINSOVANN
alois-jaxid | T°9°¢ HLONITNONDIVANNJO BNjeA 0 Agbauneo | 4z HLONITMOUMOVINN
alois-1oxid | 7'9'¢ | SADVINIT dIXSADVANNLO 8NnjeA 0 Asbaeo | L7 SIOVAIINSHOVANN

IHOIFHEOVINNOVdANN
alois-jaxid | T°9°¢ JO anfep 0 Aabaunen 1+ Z || LHOEH IOVANIOVANN
alois-jaxid | T°9°¢ 1SHI4'dST™MOVANNJO 8NjeA | asjed | Aueajoodla9) q LSUIFESTHOVANN
alois-jaxid | T°9°¢ SALAAVYMSIDOVANNJO 3NjeA | asjed | AUes|00gleD q SILAEAVMSHOVANN
aingquny 0es uonduasag anpen puw) adAL aneA 199
[emuj 199

Table 6.20. Pixels

Version 1.4 - July 24, 2002

CHAPTER 6. STATE AND STATE REQUESTS

236

Salljua 3|ge} 40|09 Al@)awered
[axid €'9'c | 01palydde sio10e) selg |0‘0'0‘0 -9|0e110]|0D199 W X € SVIg 318VI 0100
Salljua a|ge} J0j09 AlS)1aWered
loxid €'9'c | 0} pajdde si030e} 3[€dS | T'T'T'T -9|qeLJ0j0D199 y X € 37V0S 318VI40100
ALISN3LNI
J0O3DNVNIANT
YHd1V 3N1gN3I34D
a3 s! ziuonnjosal AlBlaWRIRd
- £'9'¢ | wauodwod a|gel 10]0D 0 -9|qeLJ0j0DI8D) | 4+ Z X EX T X9 37/ 318VI0T00
YIpIm AlBlaWRIed
— £'9'c | payoads sa|gel 10j0D 0 -9|0e.10]|0D199 LZXEXG HLAIM 318V1 0100
Tewuoy abewl ALBlBWRIRd
= €9¢ [eusalul Ssjgel 10j0D | VYO -9|ge1.10]j0D1eD Sy X e X 1VNHO4"318VLHOT0D
a|ge}
= £'9'¢ | 10J02 Xl1ew Jojod 1sod | Aidwsa 9|gel.10|0D199 I 318V H0T0” XIMIYAHOTO0I1S0d
s|gel
= €'9¢ J0]02 UOIIN|OAUOD 1SOd Adwa 9|ge110j0D1e9 I 378V.L Y0100 NOILNTOANODLSOd
= €9¢ a|gel Jojo) | Adwa 9|(e110]|00199 T 3781240100
auop
s1 dnx00| a|ge} 10|09
9|qeus/|axid | £'9°'¢ | Xurew Jojodisod yiani] | asied pajqeuss| g 318V 40700” XMLV HOT091S0d
auop
s1 dnx00| a|ge} 10|02
a|geus/|axid | £'9°'¢ | uonnjoAuod isod jianl] | asfed pajqeuss| qg 378V1 4010 NOILNTOANOD1SOd
auop sI dnxooj
a|geus/axid | £'9°¢ 3|ge} J0j0d J1 dni] | asped pajqeuss| g 318V1240700
gLy BELS uonduosag aneA puwd adAL anjeA 199
[eniu| 199

Table 6.21. Pixels (cont.)

Version 1.4 - July 24, 2002

237

6.2. STATE TABLES

AlB1BWElRd
- G'9'e | WBiay Jayy uonnjoauod 0 -UuonN|oAUODIRD | (Z X ¢ LHOISHNOILNTOANOD
AlB18Weled
— GO9S | UIpIm I3}l UOIIN|OAUOD 0 -UONN|OAUODIRD) | L Z X & HLQIM NOLLNTOANOD
Tewlo} feusaul AlIR1oWeled
- S9€ 43}l Uonn|joAuo] | v89d -uonn|oAu0DIRY | 7 X ¢ LVAHOFNOILATOANOD
S8L1ua 18}|l} UONN|OAUOD NJ31aweled
[oxid ¢'9'¢ | 01palndde sioloe)selg | 0'0‘0‘'0 -UONNJOAUODIBD) | L X € SVIE LTI "NOILNTOANOD
SaLIJuUd 18}|1} UOIIN|OAUOD NJa1aweled
[ax1d £'9'¢ | 01 paldde si00ef 8[eds | T'T'T'T -uonN|oAUODIRD | 4 X € FTVOSHILTIFNOLLNTOANOD
apow AlIR1oWeled
|axid S'9¢ J3plog uonnjoauod HoNd3d -uonnjoAuoDIeY | 7z X ¢ JAONWAIAUOENOILNTOANOD
AlB1aWeled
[axid G'9°¢ 110]02 J9pIOg uonNjoAuoD | 0‘0°0‘0 -UoNN|OAUODISD | D X ¢ ¥OTOOUIAHOT NOILNTOANOD
181y 191
- £'9'¢ | uonnjoAuod g|gesredas | Aldws | -4 -9|qeredasieD | T X g Qga1avavdas
cloTt 1914
— £'9'c | slasiayy uonnjoauod | Adwa -UONN|OAUODIRD) | [X g Q"NOILNTOANOD
auop SI UON|OAUOD
a|geusyaxid | £'9°¢ dz 9|qesedas jianil | asped pajqeuss| g azanavivdas
auop
a|geus/axid | £'9°¢ |SI uonNoAUOD g Jianil | asfeq pajgeus| g AZ'NOILNTOANOD
auop
3|qeus/axid | £'9°¢ |SIUOAN|OAUOD T Jidnil | asfed ps|gqeu3s| q AT NOILNTOANOD
aNguUNy 095 uonduosaq anfeA puw) adAL anjeA 199
eyl 199

Table 6.22. Pixels (cont.)

Version 1.4 - July 24, 2002

CHAPTER 6. STATE AND STATE REQUESTS

238

sdnoub jaxid sawnsuod AlIB1BWRIRd
- €'9'¢e Buiwwesbolsiy Ji anil | aspeq -welbolsiHIe9 g SNISTNVHOOLSIH
IONVNINNTI0 YHA TV
ElRRENEEBEERE
wonnjosal Jusuodwod AllI1aWeIed
= €'9'¢ a|qe] welboisiH 0 -welBoIsIHIeY | +Z X T X G 37IS T WYHOOLSIH
Jew.oy AlBlaWeled
- £'9'¢ |reusaul ajqel welboisiH |vaoy -welboisiHIe9 Ty X ¢ LYWHOSWYHOOLSIH
AlBlaWeled
- €'9¢ yipim ajqel welbolsiH 0 -welbolsiHIeD L7 XT HLAIMAYH9OLSIH
= €'9'¢ a|qel weiboisiH |Adwa welbolsiHIe9 T WYHOOLSIH
pajqeusa
a|qeus/axid | £'9'¢ |sI Bulwelbolsiy Ji anil | asped pajqeu3s| g WYH9OLSIH
XUTew 1ojod Jaye
[axid £'9°'¢ |slo1oe) seiq Jusuodwo) 0 AJe0|d199 y SYIg®" XI4 LYW HOT091S0d
XUreuw 1ojod laye
[oxid £'9'¢ 510108} 3[eds Jusauodwo) T ARO|H4199 y 31V0S 2 XIHIVINHO1091S0d
UONN|OAUOD Ja)e
[axid £'9°'¢ |sloioe) seiq usuodwo) 0 DNUEEIED) Y SVIE"2"NOILNTOANOJ1SOd
VHd 1V
10 3N1GN3ITHO a3y
S| ZUONN|OAUOD Ja)je
[oxid £'9'¢ 510]10®} 3[eds Jusauodwo) 1 AJeO|199 g ITVOS ZNOILNTOANODLSOd
angLUny 093 uonduosaq anjeA puw) adAL anfeA 199
femuj 199

Table 6.23. Pixels (cont.)

Version 1.4 - July 24, 2002

239

6.2. STATE TABLES

[oxid AL Jayng a2.inos peay Z2'Syo9s nebaupen €7 ¥3dHngavay

- €9¢€ 13|qe) JO 8ZIS 1 INEEIER! +Z azis @

g'ealqeL
wo.j sweu dew
e S| 489|ge) uone[suel]
- €9¢ de|axidxapu| S.0 deI9XIdI®D | ZX *TE X T @
g'ea|qel
woJj aweu dew
e S| 489|ge) uone[suel]

- €9¢ deexid vaoy S.0 deNIoXIdIeD | ¥ X *T¢ X 8
|axid ¥'9'¢ Jojoe) wooz fi 0T NR0|4199 Yy AW00Z
[oxid '9°¢ l01oB] WO0Z T 0T AJRO0|d199 y X'WO0Z

sdnoub jaxid sawnsuod AllB1aWeIed

- e'9'¢g Xeuwiuiw JI aniy asje -XeWUuIN199 g SINIS™ XYINNIW

Jew.oy AlBlaWeled
- €9¢ [eutsjul ajgel Xewuln vdaod -XeWUulNISD Yy LYWHOJ™ XVINNIN
- €9¢ 3(0e) XewulN | (www'w) (N NI IN) Xewuln1e9 u XVANIN
pajgeua
a|qeus/jaxid | £9'¢ S| Xewuliw j1 sanil asjed pajqeus| q XVANIN
gLy '09G uonduosaq anfea puw) adAL anjeA 199
[emu| 199

Table 6.24. Pixels (cont.)

Version 1.4 - July 24, 2002

CHAPTER 6. STATE AND STATE REQUESTS

240

pajgeus

d|geus/eAs | T'G uonelauab ewlou dijewolne Jianll | asjeqd | psjgeus| g WWHON-OLNY

[ena TS suoisinip pub pg TT Neo|d189 +Z X ¢ SLNINOIS QIO ZVIN

[ena TS SUOISIAIP pub pT T Aleo|d199 +7 SININOIS ATV

[ens TS swiodpua pub pz | T'0‘T‘0 | Meo|d189 Y X¥ NIVNOQ™QIN9ZdVIN

[ena TS sjulodpus pub pT T'0 AJe0|d199 Y Xz NIVINOQ™QIN9 TdVIN

a|qeusjens | T'S adA1 dew sI zsajqeusa dew pz | asjed | pajgeuds| g %6 TZdvIN

a|qeusjens | T'S adA1 dew s| ssajqeus dew pT | asfeqd | pajqeuds| g X6 TN

- T'S swulodpus urewop pg | T°'ge9s | adepniao YXFX6 NIVINOQ

- TS swiodpus urewop pT | T°'ge9s | Aldeia9 Y XTX6 NIVWOQ

— TS sulod j0U0d pZ | T'GeaS | ANdeNID) | U X *8X %8 X 6 44300

- TG swiod |0u02 PT | T'geds | AldeN1a9 WX *8 X6 44300

— TS siapJo dew pg T'T AdeN199 87 X T X6 ¥3aH0

- TS lapJo dew pt T AdeN199 87 X 6 ¥3QH0
ainquny "09s uonduosaq anjep puw) adAL aneA 199

eyl 189

Table 6.25. Evaluators&SetMap takes a map name)

Version 1.4 - July 24, 2002

241

6.2. STATE TABLES

iy 9'G | 1y Aupenb uoissaidwod ainxal |3YVIINOQA | Mebalupnes | &7 INIHNOISSIdINODMNLXAL
iy 9'g july uonelauab dewdi [IHYOINOQ | AMbapes | €7 INIH dYNdINTLYY3INTD
uy 9'g iy bo4 |3YVOLINOQ | Mabaupes | &7 AINIHDOH
iy 9'G Uy yioows uobAjod [3HVIINOQ | AMebalupes | &7 INIHHLOOWSNODATOd
iy 9'G U1y yloows aull |34vIINOQ | AMabawpes | &y INIHHLOOWS 3NN
uly 9'g 1UIY Yyloowss UIod |3HVYIINOQ | Mabaupes &7 INIHHLOOWS™LNIOd
1y 9'G July uonodaliod ®>_H0®Qm_mn_ JHVYOINOAd Emmmuczmw 1374 LINIHNOILOFHHOIAILOIdSHAd
ainguuy '098s uonduasag anen puw) adAl aneA 189
[emuj 109

Table 6.26. Hints

Version 1.4 - July 24, 2002

CHAPTER 6. STATE AND STATE REQUESTS

242

- T0T°¢C SUOISUBWIP MOAMBIA WNWIXeN | T°0T 299s | Aebanes | L7 X g SWITLIOdMAIA XYIN
laplio

- TS [elwouAjod Jo1eneAns WNWIXep 8 nabaupen 7z YIQUO™ VAT XVIN

- 'S Bunsau |2 1s1| Aejdsip wnwixen ¥9 INEEIVIELS) 7 ONILSAN"LSIT XY
yidap

- 2'S 30B1S SWeU UOI9|9S WNWIXeN ¥9 nabaueo 7z H1d3aYOVLS INYN" XYW
a|ge] uone|suel

- £9¢ deaXIe JO 9ZIS wnwixe A INETEIIE]S) 7z F18VLdYN T3XId” XYIN
uoisuawip

- T'8'c epbew! ainxal dew aqna wWNWIXep 9T nabaweo .z 3ZISTUNLXAL dYINIENO™ XY
selq |re1sp

- 8'8°S |10 |9A3] 8IN1X8] SINjOSE WNWIXeN 072 AJe0|d189 Y SVIE"a0TIUNLXAL XYW
uoisuawip

— T8¢ abewi ain)xa) AT/Agz Wnwixe ¥9 INELEINEL) A 3ZISUNLXAL XYW
uoisuawip

— T'8°€ abewl ainixal g Wnwixep| 9T Aabaues A 3ZISTUNLXILAE XYW
™ipue "@aalds ul uoisioald

- € [@x1dgns Jo siq Jo JaquinN ¥ nabaweo “Z SLIgTaxIdans
o®lS XLrew

- 2'0T°2 PInixa1 Jo Yidap Jaquinu wnwixep Z INELEIIIELD) 4 HLd3aYOVLS FUNLXAL XYIN
yidap

— Z2°0T°Z | Moers xurew uonosloid wnwixep Z INELEINEL) 7z HLd3aYOVLSNOILO3r0Md™ XY

- Z'0T'Z |yidap xoeis MaiA-|apowl WnWIxXe 43 nabaeo “Z HLd3a3OVLS MIINTIAON™ XYIN

- €'9'¢ [yidap xoe1s Xuew 1ojod WNWIXep Z nsbaueo 7 H1d3aMOVLS™ XI4IYINHOT0™ XYIN
saue|d

- TT'Z |Buiddid Jasn Jo Jaquinu wnwixep 9 INETEIIE]S) A SINVIAdITO™ XY

- TETC S1yh| JO Jaquuinu WiNWiIXey| 8 nabaeo -z SLHOIT XVIN

ainguy "098s uonduosaq anjeA puw) adAL anfeA 199
WNWIUIN 189

Table 6.27. Implementation Dependent Values

Version 1.4 - July 24, 2002

243

6.2. STATE TABLES

Aurenuelb

(ALIIVINNYEO HLAIMINIT T TA)

- v'e YIpIMm aul| paseljeluy - Aleo|d199 +d ALIIVINNYYO HLAIM ANITHLOONS

SYIPIM aUl| paseljenue (IONVE HLAIMANIT T TA)

— v'e Jo (Iy 01 0]) abuey T'T ANReO|4189 | 1Y X T JONVY HLAIM INITHLOOWS
syppIm aul|

- '€ |pasele Jo (1y 01 0]) abuey T'T AleO[H199) | LY X T JONVY HLAIM INIT aISVITY

Arenuelb (ALIMYINNYHEOTZISINIOM T'TA)

— c'e 9zIs Juiod paselenuy - AJeo|d189 +d ALIIVINNYYOFZIS"INIOdHLOOWS

S9ZIS E_OQ poseljenue (IONVYIZISINIOL ‘T'TA)

- e'c Jo (1y 01 0]) abuey T'T NeO|H19D) | L4 X ¢ JONVHIZISINIOIHLOONS
sazis juiod

- ¢'c |paselfe jo (1Iy 01 0]) abuey T'T ANeO|H19D) | LY X ¢ 3ONVHIZISINIOI3SVITY
1SIX9

- 9 slagng ybu 7 sl J anug - AUB3|00gl1aD) qg o3¥3lLs
1SIXa siajjng

- A% Yoeq % 1uolj Jl anil - AUR3|00g1aD qg ¥314ng31gnoa
soxapul

- L'C 9J0]S sJiajng 10jo2 JI ani| - AUEB3|00d199 qg A0 X3ANI
eqhl

— 1'C 9101S sJiajng 10joJ Ji anl| - AUB3|00glaD) q 3A0NVE9Y
Siajing

- T2V Arejjixne Jo JaquinN 0 INELEIELS) +7Z S¥344Ng XNV
a|qe] weliboisiy

- €9'¢ 31 JO 3ZIS wnwixen A - A -
a|qe)

— €'9'¢ | 10]02 B JO 3ZIS wnwiIxXen rAS - sz xe¢ -
»oe)s ainglune ual|d

- 9 3y} Jo yidap wnuwixen oT INELEIEDD) A HLd3AMOVLS gIdLLY LN XV
oels ainglme Isniss

- 9 a9yl jo r_uam_u wnuwixew 9T ?.mmmE:wO +7Z H1d3a™OVLS aIdLLY XVIN

ainguny 'o98s uonduoasag anfep puw) adA) anfeA 199
wnuwiuin 189

Table 6.28. Implementation Dependent Values (cont.)

Version 1.4 - July 24, 2002

CHAPTER 6. STATE AND STATE REQUESTS

244

sjew.o}
alnixa) passaldwod

- £'8°¢ | palelawnua JO JlaquinN 0 INEEINIELD) VA SIVWHO4FANLXIIAISSTIANOD NN
SjewJoy) ainixal

- £'8'¢ passaldwod pajesswnul - MabaueD | 7 X0 SIVNHO4TUNIXAIISSTUAINOD

- 12¢ 97IS ysew abelanod 0 AsbaueD 7 ST1dNYS
slayng

- T'2'€ | aildwesnnw jo Jaqunn 0 Adbauen A SHIAANT T TINVS
(zs paaoxa 0110U)

- 9'Z | Shun ainixa} Jo JaquinN 2 nebaen 7 SLINMZENLXAL XY
S92IBASIUBW
-9|3abueymelq
10 Jaquinu wnwixew

- 3¢ PIpuUsWLIOd=y - Eommuc_wmw +7Z SIOILYIASLININTTI XVIN
SERI[VESTETIY
-9|3abueymelq
10 Jaqwinu wnwixew

- 8¢ PapuUsWIOd=y - Emmmuc_umw +7Z S3IOIANISININITI XYIN

J3]J1} UOIN|OAUOD AlIS}aWeled
— (o7 JO Em_mr_ wnuwixew e -UONN[OAUODISD) | 4+ 7 X G LHOIFHNOILNTOANOD™ XY
811§ UOIN|OAUOD AlIB}oWeled
— [N 74 JO YIPIM wnwixep e -UONN|OAUODI®D) | +Z X § HLAIM NOILNTOANOD™ XVYIN
alnguny '08s uonduosaq anjeA puw) adAL aneA 199
Wwnwiuin 189

Table 6.29. Implementation Dependent Values (cont.)

Version 1.4 - July 24, 2002

245

6.2. STATE TABLES

VHJV 10 3N1GNIIHD
a3y st yiusuodwod Jayng

- % uoire|nwindde 2ul siiq 4o JaquinN - Aebawnes | 7 || susTwnoov
- 4 saue|d |10Ud)s JO JBaquINN - Aabaupes | L7 SLIgTIONALS
- % saue|d Jayng yidap jo JaquinN - Aebawneo | L7 SLgH1d3d
X3AANI 10 YHATVY INTIGNITHD
@340 auo si tyusuodwod
— 1% Jayng Jojod aul S1iq Jo JaguinN - Aebawneo | L7 sug®
alnguny "o8s uonduosag anfen puw) adAL anjeA 199
[emul 19

Table 6.30. Implementation Dependent Pixel Depths

Version 1.4 - July 24, 2002

CHAPTER 6. STATE AND STATE REQUESTS

246

loua
- G2 Buipuodsaliod e sialayl jl anil | aseq - gxu -
- GC (s)apo2 Jodis uaiInd 0 Joi3199 87 X U -
oeqpaa) | €6 adA) yoeqpas4 qaz AabBaunen B4 3dALHIHANEIOVEaTS
Xoeqpasy | €9 9ZIS 18Jin(Yoegpas- 0 nabauen A 3ZISUIANEHOVEAIT
Moeqpeas) | €°G Jajuiod Jayng yoeqpas- 0 AIBIUI0d19D A SETIN[[OXSEEE gl Dol : (e EEE]
109]9S AL 9ZIS Jaynq uonoses 0 nsbawen A 37ISU344NENOILOTTIS
109]8S 2'S Jajuiod Jayng uonos|es 0 AIBIUIOHI9D) X YILNIOdHIHANENOILOT IS
- 2'S Bumasaponlepusy MIANTY | Aebalupeo A4 300NU3ANTY
- 2'S yidap xoeis awep 0 Aabaueo 7z HLd3aMOVLS INVN
— 9 hmHC_OQ aels ainglume usl|D 0 Mabajunen +7Z HLdIAMOVLS gI¥ LIV INIITO
- 9 oels aingune Ll | Adwse - VX %97 -
- 9 Jajuiod »oels aingune 1aAIaS 0 Aabauneo 7z H1d3aMOVLS gLy
- 9 Yorls aingune lanles | Aidwe - VX %97 -
BUOU JI pauldpuUN ‘UOINIISUOI
- ¥'S Japun 1si| Aejdsip jo spo 0 Asbaen 7z 300N 111
auOoU JI 0 ‘UONINIISUOI
- 'S Japun 1s1| Aejdsip jo JaquinN 0 Aabauneo 7z X3ANI1SIT
19| v'q asedisijo Bumes 0 INEEIVIELS) +7 3SvE 1S
ainquny 09s uonduosaq anjep puw) adAL anfeA 199
eyl 19

Table 6.31. Miscellaneous

Version 1.4 - July 24, 2002

Appendix A

Invariance

The OpenGL specification is not pixel exact. It therefore does not guarantee an ex-
act match between images produced by different GL implementations. However,
the specification does specify exact matches, in some cases, for images produced
by the same implementation. The purpose of this appendix is to identify and pro-
vide justification for those cases that require exact matches.

A.1 Repeatability

The obvious and most fundamental case is repeated issuance of a series of GL com-
mands. For any given GL and framebuffer stegetor, and for any GL command,

the resulting GL and framebuffer state must be identical whenever the command is
executed on that initial GL and framebuffer state.

One purpose of repeatability is avoidance of visual artifacts when a double-
buffered scene is redrawn. If rendering is not repeatable, swapping between two
buffers rendered with the same command sequence may result in visible changes
in the image. Such false motion is distracting to the viewer. Another reason for
repeatability is testability.

Repeatability, while important, is a weak requirement. Given only repeata-
bility as a requirement, two scenes rendered with one (small) polygon changed
in position might differ at every pixel. Such a difference, while within the law
of repeatability, is certainly not within its spirit. Additional invariance rules are
desirable to ensure useful operation.

247

248 APPENDIX A. INVARIANCE

A.2 Multi-pass Algorithms

Invariance is necessary for a whole set of useful multi-pass algorithms. Such al-
gorithms render multiple times, each time with a different GL mode vector, to
eventually produce a result in the framebuffer. Examples of these algorithms in-
clude:

e “Erasing” a primitive from the framebuffer by redrawing it, either in a dif-
ferent color or using the XOR logical operation.

e Using stencil operations to compute capping planes.

On the other hand, invariance rules can greatly increase the complexity of high-
performance implementations of the GL. Even the weak repeatability requirement
significantly constrains a parallel implementation of the GL. Because GL imple-
mentations are required to implement ALL GL capabilities, not just a convenient
subset, those that utilize hardware acceleration are expected to alternate between
hardware and software modules based on the current GL mode vector. A strong
invariance requirement forces the behavior of the hardware and software modules
to be identical, something that may be very difficult to achieve (for example, if the
hardware does floating-point operations with different precision than the software).

What is desired is a compromise that results in many compliant, high-
performance implementations, and in many software vendors choosing to port to
OpenGL.

A.3 Invariance Rules
For a given instantiation of an OpenGL rendering context:

Rule 1 For any given GL and framebuffer state vector, and for any given GL com-
mand, the resulting GL and framebuffer state must be identical each time the com-
mand is executed on that initial GL and framebuffer state.

Rule 2 Changes to the following state values have no side effects (the use of any
other state value is not affected by the change):

Required:

e Framebuffer contents (all bitplanes)
e The color buffers enabled for writing
e The values of matrices other than the top-of-stack matrices

Version 1.4 - July 24, 2002

A.3. INVARIANCE RULES 249

Scissor parameters (other than enable)

Writemasks (color, index, depth, stencil)
Clear values (color, index, depth, stencil, accumulation)

o Current values (color, index, normal, texture coords, edgeflag)
Current raster color, index and texture coordinates.

o

(e]

Material properties (ambient, diffuse, specular, emission, shininess)
Strongly suggested:

e Matrix mode

e Matrix stack depths

e Alpha test parameters (other than enable)

e Stencil parameters (other than enable)

¢ Depth test parameters (other than enable)

e Blend parameters (other than enable)

e Logical operation parameters (other than enable)
e Pixel storage and transfer state

e Evaluator state (except as it affects the vertex data generated by the
evaluators)

e Polygon offset parameters (other than enables, and except as they affect
the depth values of fragments)

Corollary 1 Fragment generation is invariant with respect to the state values
marked withe in Rule 2.

Corollary 2 The window coordinates (X, y, and z) of generated fragments are also
invariant with respect to

Required:

e Current values (color, color index, normal, texture coords, edgeflag)
e Current raster color, color index, and texture coordinates
e Material properties (ambient, diffuse, specular, emission, shininess)

Rule 3 The arithmetic of each per-fragment operation is invariant except with re-
spect to parameters that directly control it (the parameters that control the alpha
test, for instance, are the alpha test enable, the alpha test function, and the alpha
test reference value).

Version 1.4 - July 24, 2002

250 APPENDIX A. INVARIANCE

Corollary 3 Images rendered into different color buffers sharing the same frame-
buffer, either simultaneously or separately using the same command sequence, are
pixel identical.

A.4 What All This Means

Hardware accelerated GL implementations are expected to default to software op-
eration when some GL state vectors are encountered. Even the weak repeatability
requirement means, for example, that OpenGL implementations cannot apply hys-
teresis to this swap, but must instead guarantee that a given mode vector implies
that a subsequent commaalivaysis executed in either the hardware or the soft-
ware machine.

The stronger invariance rules constrain when the switch from hardware to soft-
ware rendering can occur, given that the software and hardware renderers are not
pixel identical. For example, the switch can be made when blending is enabled or
disabled, but it should not be made when a change is made to the blending param-
eters.

Because floating point values may be represented using different formats in dif-
ferent renderers (hardware and software), many OpenGL state values may change
subtly when renderers are swapped. This is the type of state value change that Rule
1 seeks to avoid.

Version 1.4 - July 24, 2002

Appendix B

Corollaries

The following observations are derived from the body and the other appendixes of
the specification. Absence of an observation from this list in no way impugns its
veracity.

1.

The CURRENRASTERTEXTURECOORD®NuUSt be maintained correctly at
all times, including periods while texture mapping is not enabled, and when
the GL is in color index mode.

. When requested, texture coordinates returned in feedback mode are always

valid, including periods while texture mapping is not enabled, and when the
GL is in color index mode.

. The error semantics of upward compatible OpenGL revisions may change.

Otherwise, only additions can be made to upward compatible revisions.

GL query commands are not required to satisfy the semantics dfltish
or theFinish commands. All that is required is that the queried state be con-
sistent with complete execution of all previously executed GL commands.

Application specified point size and line width must be returned as specified
when gueried. Implementation dependent clamping affects the values only
while they are in use.

Bitmaps and pixel transfers do not cause selection hits.

. The mask specified as the third argumerstencilFuncaffects the operands

of the stencil comparison function, but has no direct effect on the update of
the stencil buffer. The mask specified ByencilMask has no effect on the
stencil comparison function; it limits the effect of the update of the stencil
buffer.

251

252

(o]

[(e]

10.

11.

12.

13.

14.

15.

16.

APPENDIX B. COROLLARIES

Polygon shading is completed before the polygon mode is interpreted. If the
shade model i5LAT, all of the points or lines generated by a single polygon
will have the same color.

Adisplay listis just a group of commands and arguments, so errors generated
by commands in a display list must be generated when the list is executed.
If the list is created iCOMPILEmode, errors should not be generated while
the list is being created.

RasterPosdoes not change the current raster index from its default value
in an RGBA mode GL context. Likewis®&asterPosdoes not change the
current raster color from its default value in a color index GL context. Both
the current raster index and the current raster color can be queried, however,
regardless of the color mode of the GL context.

A material property that is attached to the current colorGadorMaterial
always takes the value of the current color. Attempts to change that material
property viaMaterial calls have no effect.

Material and ColorMaterial can be used to modify the RGBA material
properties, even in a color index context. Likewisigterial can be used to
modify the color index material properties, even in an RGBA context.

There is no atomicity requirement for OpenGL rendering commands, even
at the fragment level.

Because rasterization of non-antialiased polygons is point sampled, poly-
gons that have no area generate no fragments when they are rasterized in
FILL mode, and the fragments generated by the rasterization of “narrow”
polygons may not form a continuous array.

OpenGL does not force left- or right-handedness on any of its coordinates
systems. Consider, however, the following conditions: (1) the object coordi-
nate system is right-handed; (2) the only commands used to manipulate the
model-view matrix ar&cale(with positive scaling values onlyRotate, and
Translate; (3) exactly one of eithdfrustum or Ortho is used to set the pro-
jection matrix; (4) the near value is less than the far valuefepthRange

If these conditions are all satisfied, then the eye coordinate system is right-
handed and the clip, normalized device, and window coordinate systems are
left-handed.

ColorMaterial has no effect on color index lighting.

Version 1.4 - July 24, 2002

17.

18.

19.

20.

21.

253

(No pixel dropouts or duplicates.) Let two polygons share an identical edge
(that is, there exist vertices A and B of an edge of one polygon, and vertices
C and D of an edge of the other polygon, and the coordinates of vertex A
(resp. B) are identical to those of vertex C (resp. D), and the state of the the
coordinate transfomations is identical when A, B, C, and D are specified).
Then, when the fragments produced by rasterization of both polygons are
taken together, each fragment intersecting the interior of the shared edge is
produced exactly once.

OpenGL state continues to be modifiedHiBEDBACKnNode and ir6ELECT
mode. The contents of the framebuffer are not modified.

The current raster position, the user defined clip planes, the spot directions
and the light positions forIGHT:, and the eye planes for texgen are trans-
formed when they are specified. They are not transformed durifap#t-

trib , or when copying a context.

Dithering algorithms may be different for different components. In particu-
lar, alpha may be dithered differently from red, green, or blue, and an imple-
mentation may choose to not dither alpha at all.

For any GL and framebuffer state, and for any group of GL commands and
arguments, the resulting GL and framebuffer state is identical whether the
GL commands and arguments are executed normally or from a display list.

Version 1.4 - July 24, 2002

Appendix C

Version 1.1

OpenGL version 1.1 is the first revision since the original version 1.0 was released
on 1 July 1992. Version 1.1 is upward compatible with version 1.0, meaning that
any program that runs with a 1.0 GL implementation will also run unchanged with
a 1.1 GL implementation. Several additions were made to the GL, especially to
the texture mapping capabilities, but also to the geometry and fragment operations.
Following are brief descriptions of each addition.

C.1 \Vertex Array

Arrays of vertex data may be transferred to the GL with many fewer commands
than were previously necessary. Six arrays are defined, one each storing vertex
positions, normal coordinates, colors, color indices, texture coordinates, and edge
flags. The arrays may be specified and enabled independently, or one of the pre-
defined configurations may be selected with a single command.

The primary goal was to decrease the number of subroutine calls required
to transfer non-display listed geometry data to the GL. A secondary goal was to
improve the efficiency of the transfer; especially to allow direct memory access
(DMA) hardware to be used to effect the transfer. The additions match those of
the EXT.vertex _array extension, except that static array data are not supported
(because they complicated the interface, and were not being used), and the pre-
defined configurations are added (both to reduce subroutine count even further,
and to allow for efficient transfer of array data).

254

C.2. POLYGON OFFSET 255

C.2 Polygon Offset

Depth values of fragments generated by the rasterization of a polygon may be
shifted toward or away from the origin, as an affine function of the window coor-
dinate depth slope of the polygon. Shifted depth values allow coplanar geometry,
especially facet outlines, to be rendered without depth buffer artifacts. They may
also be used by future shadow generation algorithms.

The additions match those of tie#XT _polygon _offset extension, with two
exceptions. First, the offset is enabled separatelyP@INT, LINE , andFILL ras-
terization modes, all sharing a single affine function definition. (Shifting the depth
values of the outline fragments, instead of the fill fragments, allows the contents of
the depth buffer to be maintained correctly.) Second, the offset bias is specified in
units of depth buffer resolution, rather than in the [0,1] depth range.

C.3 Logical Operation

Fragments generated by RGBA rendering may be merged into the framebuffer us-
ing a logical operation, just as color index fragments are in GL version 1.0. Blend-
ing is disabled during such operation because itis rarely desired, because many sys-
tems could not support it, and to match the semantics dtdieblend _logic _op
extension, on which this addition is loosely based.

C.4 Texture Image Formats

Stored texture arrays have a format, known asitlernal format rather than a
simple count of components. The internal format is represented as a single enumer-
ated value, indicating both the organization of the image dai(NANCE RGB

etc.) and the number of bits of storage for each image component. Clients can use
the internal format specification to suggest the desired storage precision of texture
images. Nevwbase formatsALPHAandINTENSITY , provide new texture environ-
ment operations. These additions match those of a subset @&Xthexture
extension.

C.5 Texture Replace Environment
A common use of texture mapping is to replace the color values of generated

fragments with texture color data. This could be specified only indirectly in GL
version 1.0, which required that client specified “white” geometry be modulated

Version 1.4 - July 24, 2002

256 APPENDIX C. VERSION 1.1

by a texture. GL version 1.1 allows such replacement to be specified explicitly,
possibly improving performance. These additions match those of a subset of the
EXT.texture extension.

C.6 Texture Proxies

Texture proxies allow a GL implementation to advertise different maximum tex-
ture image sizes as a function of some other texture parameters, especially of the
internal image format. Clients may use the proxy query mechanism to tailor their
use of texture resources at run time. The proxy interface is designed to allow such
gueries without adding new routines to the GL interface. These additions match
those of a subset of tHEXT_texture extension, except that implementations re-
turn allocation information consistent with support for complete mipmap arrays.

C.7 Copy Texture and Subtexture

Texture array data can be specified from framebuffer memory, as well as from
client memory, and rectangular subregions of texture arrays can be redefined either
from client or framebuffer memory. These additions match those defined by the
EXT.copy texture andEXT.subtexture extensions.

C.8 Texture Objects

A set of texture arrays and their related texture state can be treated as a single ob-
ject. Such treatment allows for greater implementation efficiency when multiple
arrays are used. In conjunction with the subtexture capability, it also allows clients
to make gradual changes to existing texture arrays, rather than completely redefin-
ing them. These additions match those of EX€T texture _object extension,

with slight additions to the texture residency semantics.

C.9 Other Changes

1. Color indices may now be specified as unsigned bytes.

2. Texture coordinates, ¢, andr are divided byg during the rasterization of
points, pixel rectangles, and bitmaps. This division was documented only
for lines and polygons in the 1.0 version.

Version 1.4 - July 24, 2002

C.10. ACKNOWLEDGEMENTS 257

3. The line rasterization algorithm was changed so that vertical lines on pixel
borders rasterize correctly.

4. Separate pixel transfer discussions in chaptend chapte# were combined
into a single discussion in chaptér

5. Texture alpha values are returned as 1.0 if there is no alpha channel in the
texture array. This behavior was unspecified in the 1.0 version, and was
incorrectly documented in the reference manual.

6. Fog start and end values may now be negative.

7. Evaluated color values direct the evaluation of the lighting equati@oif
orMaterial is enabled.

C.10 Acknowledgements

OpenGL 1.1 is the result of the contributions of many people, representing a cross
section of the computer industry. Following is a partial list of the contributors,
including the company that they represented at the time of their contribution:

Kurt Akeley, Silicon Graphics

Bill Armstrong, Evans & Sutherland

Andy Bigos, 3Dlabs

Pat Brown, IBM

Jim Cobb, Evans & Sutherland

Dick Coulter, Digital Equipment

Bruce D’Amora, GE Medical Systems

John Dennis, Digital Equipment

Fred Fisher, Accel Graphics

Chris Frazier, Silicon Graphics

Todd Frazier, Evans & Sutherland

Tim Freese, NCD

Ken Garnett, NCD

Mike Heck, Template Graphics Software

Dave Higgins, IBM

Phil Huxley, 3Dlabs

Dale Kirkland, Intergraph

Hock San Lee, Microsoft

Kevin LeFebvre, Hewlett Packard

Jim Miller, IBM

Tim Misner, SunSoft

Version 1.4 - July 24, 2002

258 APPENDIX C. VERSION 1.1

Jeremy Morris, 3Dlabs

Israel Pinkas, Intel

Bimal Poddar, IBM

Lyle Ramshaw, Digital Equipment
Randi Rost, Hewlett Packard
John Schimpf, Silicon Graphics
Mark Segal, Silicon Graphics

Igor Sinyak, Intel

Jeff Stevenson, Hewlett Packard
Bill Sweeney, SunSoft

Kelvin Thompson, Portable Graphics
Neil Trevett, 3Dlabs

Linas Vepstas, IBM

Andy Vesper, Digital Equipment
Henri Warren, Megatek

Paula Womack, Silicon Graphics
Mason Woo, Silicon Graphics
Steve Wright, Microsoft

Version 1.4 - July 24, 2002

Appendix D

Version 1.2

OpenGL version 1.2, released on March 16, 1998, is the second revision since the
original version 1.0. Version 1.2 is upward compatible with version 1.1, meaning
that any program that runs with a 1.1 GL implementation will also run unchanged
with a 1.2 GL implementation.

Several additions were made to the GL, especially to texture mapping capa-
bilities and the pixel processing pipeline. Following are brief descriptions of each
addition.

D.1 Three-Dimensional Texturing

Three-dimensional textures can be defined and used. In-memory formats for three-
dimensional images, and pixel storage modes to support them, are also defined.
The additions match those of tEXT texture3D extension.

One important application of three-dimensional textures is rendering volumes
of image data.

D.2 BGRA Pixel Formats

BGRAextends the list of host-memory color formats. Specifically, it provides a
component order matching file and framebuffer formats common on Windows plat-
forms. The additions match those of th&T_bgra extension.

259

260 APPENDIX D. VERSION 1.2

D.3 Packed Pixel Formats

Packed pixels in host memory are represented entirely by one unsigned byte, one
unsigned short, or one unsigned integer. The fields with the packed pixel are not
proper machine types, but the pixel as a whole is. Thus the pixel storage modes
and their unpacking counterparts all work correctly with packed pixels.

The additions match those of theXT_packed _pixels extension, with the
further addition of reversed component order packed formats.

D.4 Normal Rescaling

Normals may be rescaled by a constant factor derived from the modelview matrix.
Rescaling can operate faster than renormalization in many cases, while resulting in
the same unit normals.

The additions are based on tBX¥T.rescale _normal extension.

D.5 Separate Specular Color

Lighting calculations are modified to produce a primary color consisting of emis-
sive, ambient and diffuse terms of the usual GL lighting equation, and a secondary
color consisting of the specular term. Only the primary color is modified by the
texture environment; the secondary color is added to the result of texturing to pro-
duce a single post-texturing color. This allows highlights whose color is based on
the light source creating them, rather than surface properties.

The additions match those of theXT_separate _specular _color exten-
sion.

D.6 Texture Coordinate Edge Clamping

GL normally clamps such that the texture coordinates are limited to exactly the
rangel0, 1]. When a texture coordinate is clamped using this algorithm, the texture
sampling filter straddles the edge of the texture image, taking half its sample values
from within the texture image, and the other half from the texture border. It is
sometimes desirable to clamp a texture without requiring a border, and without
using the constant border color.

A new texture clamping algorithmGCLAMPTO.EDGE clamps texture coordi-
nates at all mipmap levels such that the texture filter never samples a border texel.
The color returned when clamping is derived only from texels at the edge of the
texture image.

Version 1.4 - July 24, 2002

D.7. TEXTURE LEVEL OF DETAIL CONTROL 261

The additions match those of tB&1S texture _edge _clamp extension.

D.7 Texture Level of Detail Control

Two constraints related to the texture level of detail parametare added. One
constraint clamps\ to a specified floating point range. The other limits the se-
lection of mipmap image arrays to a subset of the arrays that would otherwise be
considered.

Together these constraints allow a large texture to be loaded and used initially
at low resolution, and to have its resolution raised gradually as more resolution is
desired or available. Image array specification is necessarily integral, rather than
continuous. By providing separate, continuous clamping of\tharameter, it is
possible to avoid "popping” artifacts when higher resolution images are provided.

The additions match those of tB&I1S texture _lod extension.

D.8 Vertex Array Draw Element Range

A new form of DrawElementsthat provides explicit information on the range of
vertices referred to by the index set is added. Implementations can take advantage
of this additional information to process vertex data without having to scan the
index data to determine which vertices are referenced.

The additions match those of tBXT.draw _range _elements extension.

D.9 Imaging Subset

The remaining new features are primarily intended for advanced image processing
applications, and may not be present in all GL implementations. The are collec-
tively referred to as thenaging subset

D.9.1 Color Tables

A new RGBA-format color lookup mechanism is defined in the pixel transfer pro-
cess, providing additional lookup capabilities beyond the existing lookup. The key
difference is that the new lookup tables are treated as one-dimensional images with
internal formats, like texture images and convolution filter images. Thus the new
tables can operate on a subset of the components of passing pixel groups. For ex-
ample, a table with internal format. PHAmodifies only the A component of each

pixel group, leaving the R, G, and B components unmodified.

Version 1.4 - July 24, 2002

262 APPENDIX D. VERSION 1.2

Three independent lookups may be performed: prior to convolution; after con-
volution and prior to color matrix transformation; after color matrix transformation
and prior to gathering pipeline statistics.

Methods to initialize the color lookup tables from the framebuffer, in addition
to the standard memory source mechanisms, are provided.

Portions of a color lookup table may be redefined without reinitializing the
entire table. The affected portions may be specified either from host memory or
from the framebuffer.

The additions match those of theEXTcolor _table and
EXT.color _subtable extensions.

D.9.2 Convolution

One- or two-dimensional convolution operations are executed following the first
color table lookup in the pixel transfer process. The convolution kernels are them-
selves treated as one- and two-dimensional images, which can be loaded from ap-
plication memory or from the framebuffer.

The convolution framework is designed to accommodate three-dimensional
convolution, but that APl is left for a future extension.

The additions match those of theEXT.convolution and
HP.convolution _border _modes extensions.

D.9.3 Color Matrix

A 4x4 matrix transformation and associated matrix stack are added to the pixel
transfer path. The matrix operates on RGBA pixel groups, using the equation

C'=MC,
where
R
G
C= B
A

and M is the4 x 4 matrix on the top of the color matrix stack. After the
matrix multiplication, each resulting color component is scaled and biased by a
programmed amount. Color matrix multiplication follows convolution.

The color matrix can be used to reassign and duplicate color components. It
can also be used to implement simple color space conversions.

The additions match those of tB&1 color _matrix extension.

Version 1.4 - July 24, 2002

D.10. ACKNOWLEDGEMENTS 263

D.9.4 Pixel Pipeline Statistics

Pixel operations that count occurences of specific color component values (his-

togram) and that track the minimum and maximum color component values (min-

max) are performed at the end of the pixel transfer pipeline. An optional mode

allows pixel data to be discarded after the histogram and/or minmax operations are

completed. Otherwise the pixel data continues on to the next operation unaffected.
The additions match those of tBXT_histogram extension.

D.9.5 Constant Blend Color

A constant color that can be used to define blend weighting factors may be defined.
A typical usage is blending two RGB images. Without the constant blend factor,
one image must have an alpha channel with each pixel set to the desired blend
factor.

The additions match those of tEXT blend _color extension.

D.9.6 New Blending Equations

Blending equations other than the normal weighted sum of source and destination
components may be used.

Two of the new equations produce the minimum (or maximum) color com-
ponents of the source and destination colors. Taking the maximum is useful for
applications such as maximum projection in medical imaging.

The other two equations are similar to the default blending equation, but pro-
duce the difference of its left and right hand sides, rather than the sum. Image
differences are useful in many image processing applications.

The additions match those of theEXTblend minmax and
EXT.blend _subtract extensions.

D.10 Acknowledgements

OpenGL 1.2 is the result of the contributions of many people, representing a cross
section of the computer industry. Following is a partial list of the contributors,
including the company that they represented at the time of their contribution:

Kurt Akeley, Silicon Graphics

Bill Armstrong, Evans & Sutherland

Otto Berkes, Microsoft

Pierre-Luc Bisaillon, Matrox Graphics

Drew Bliss, Microsoft

Version 1.4 - July 24, 2002

264 APPENDIX D. VERSION 1.2

David Blythe, Silicon Graphics

Jon Brewster, Hewlett Packard

Dan Brokenshire, IBM

Pat Brown, IBM

Newton Cheung, S3

Bill Clifford, Digital

Jim Cobb, Parametric Technology
Bruce D’Amora, IBM

Kevin Dallas, Microsoft

Mahesh Dandapani, Rendition

Daniel Daum, AccelGraphics

Suzy Deffeyes, IBM

Peter Doyle, Intel

Jay Duluk, Raycer

Craig Dunwoody, Silicon Graphics
Dave Erb, IBM

Fred Fisher, AccelGraphics / Dynamic Pictures
Celeste Fowler, Silicon Graphics
Allen Gallotta, ATI

Ken Garnett, NCD

Michael Gold, Nvidia / Silicon Graphics
Craig Groeschel, Metro Link

Jan Hardenbergh, Mitsubishi Electric
Mike Heck, Template Graphics Software
Dick Hessel, Raycer Graphics

Paul Ho, Silicon Graphics

Shawn Hopwood, Silicon Graphics
Jim Hurley, Intel

Phil Huxley, 3Dlabs

Dick Jay, Template Graphics Software
Paul Jensen, 3Dfx

Brett Johnson, Hewlett Packard
Michael Jones, Silicon Graphics

Tim Kelley, Real3D

Jon Khazam, Intel

Louis Khouw, Sun

Dale Kirkland, Intergraph

Chris Kitrick, Raycer

Don Kuo, S3

Herb Kuta, Quantum 3D

Version 1.4 - July 24, 2002

D.10. ACKNOWLEDGEMENTS 265

Phil Lacroute, Silicon Graphics
Prakash Ladia, S3

Jon Leech, Silicon Graphics

Kevin Lefebvre, Hewlett Packard
David Ligon, Raycer Graphics

Kent Lin, S3

Dan McCabe, S3

Jack Middleton, Sun

Tim Misner, Intel

Bill Mitchell, National Institute of Standards
Jeremy Morris, 3Dlabs

Gene Munce, Intel

William Newhall, Real3D

Matthew Papakipos, Nvidia / Raycer
Garry Paxinos, Metro Link
Hanspeter Pfister, Mitsubishi Electric
Richard Pimentel, Parametric Technology
Bimal Poddar, IBM / Intel

Rob Putney, IBM

Mike Quinlan, Real3D

Nate Robins, University of Utah
Detlef Roettger, Elsa

Randi Rost, Hewlett Packard

Kevin Rushforth, Sun

Richard S. Wright, Real3D

Hock San Lee, Microsoft

John Schimpf, Silicon Graphics
Stefan Seeboth, ELSA

Mark Segal, Silicon Graphics

Bob Seitsinger, S3

Min-Zhi Shao, S3

Colin Sharp, Rendition

Igor Sinyak, Intel

Bill Sweeney, Sun

William Sweeney, Sun

Nathan Tuck, Raycer

Doug Twillenger, Sun

John Tynefeld, 3dfx

Kartik Venkataraman, Intel

Andy Vesper, Digital EqQuipment

Version 1.4 - July 24, 2002

266 APPENDIX D. VERSION 1.2

Henri Warren, Digital Equipment / Megatek
Paula Womack, Silicon Graphics

Steve Wright, Microsoft

David Yu, Silicon Graphics

Randy Zhao, S3

Version 1.4 - July 24, 2002

Appendix E

Version 1.2.1

OpenGL version 1.2.1, released on October 14, 1998, introduced ARB extensions
(see Appendit). The only ARB extension defined in this version is multitexture,
allowing application of multiple textures to a fragment in one rendering pass. Mul-
titexture is based on th&GIS_multitexture extension, simplified by removing
the ability to route texture coordinate sets to arbitrary texture units.

A new corollary discussing display list and immediate mode invariance was
added to Appendi® on April 1, 1999.

267

Appendix F

Version 1.3

OpenGL version 1.3, released on August 14, 2001, is the third revision since the
original version 1.0. Version 1.3 is upward compatible with earlier versions, mean-
ing that any program that runs with a 1.2, 1.1, or 1.0 GL implementation will also
run unchanged with a 1.3 GL implementation.

Several additions were made to the GL, especially texture mapping capabilities
previously defined by ARB extensions. Following are brief descriptions of each
addition.

F.1 Compressed Textures

Compressing texture images can reduce texture memory utilization and improve
performance when rendering textured primitives. The GL provides a framework
upon which extensions providing specific compressed image formats can be built,
and a set of generic compressed internal formats that allow applications to specify
that texture images should be stored in compressed form without needing to code
for specific compression formats (specific compressed formats, such as S3TC or
FXT1, are supported by extensions).

Texture compression was promoted from the
GLARBtexture _compression extension.

F.2 Cube Map Textures

Cube map textures provide a new texture generation scheme for looking up textures
from a set of six two-dimensional images representing the faces of a cube. The
(str) texture coordinates are treated as a direction vector emanating from the center
of a cube. At texture generation time, the interpolated per-fragifa¢n} selects

268

FE3. MULTISAMPLE 269

one cube face two-dimensional image based on the largest magnitude coordinate
(the major axis). A newst) is calculated by dividing the two other coordinates
(the minor axes values) by the major axis value, and the(géws used to lookup

into the selected two-dimensional texture image face of the cube map.

Two new texture coordinate generation modes are provided for use in con-
junction with cube map texturing. ThREFLECTIONMAPmMode generates tex-
ture coordinategstr) matching the vertex’s eye-space reflection vector, useful for
environment mapping without the singularity inherentSPHEREMAPmMapping.

The NORMAIMAPMode generates texture coordinates matching the vertex’s trans-
formed eye-space normal, useful for texture-based diffuse lighting models.

Cube mapping was promoted from fAe ARBtexture _cube _mapextension.

F.3 Multisample

Multisampling provides a antialiasing mechanism which samples all primitives
multiple times at each pixel. The color sample values are resolved to a single, dis-
playable color each time a pixel is updated, so antialiasing appears to be automatic
at the application level. Because each sample includes depth and stencil infor-
mation, the depth and stencil functions perform equivalently to the single-sample
mode.

When multisampling is supported, an additional buffer, called the multisample
buffer, is added to the framebuffer. Pixel sample values, including color, depth, and
stencil values, are stored in this buffer.

Multisampling is usually an expensive operation, so it is usually not supported
on all contexts. Applications must obtain a multisample-capable context using the
new interfaces provided by GLX 1.4 or by téGLARBmultisample extension.

Multisampling was promoted from tHeL ARBmultisample extension; The
definition of the extension was changed slightly to support both multisampling and
supersampling implementations.

F.4 Multitexture

Multitexture adds support for multiple texture units. The capabilities of the mul-
tiple texture units are identical, except that evaluation and feedback are supported
only for texture unit 0. Each texture unit has its own state vector which includes
texture vertex array specification, texture image and filtering parameters, and tex-
ture environment application.

The texture environments of the texture units are applied in a pipelined fashion
whereby the output of one texture environment is used as the input fragment color

Version 1.4 - July 24, 2002

270 APPENDIX FE. VERSION 1.3

for the next texture environment. Changes to texture client state and texture server
state are each routed through one of two selectors which control which instance of
texture state is affected.

Multitexture was promoted from thBL ARB multitexture extension.

F.5 Texture Add Environment Mode

The TEXTUREENV.MODEtexture environment functiodDD provides a texture
function to add incoming fragment and texture source colors.

Texture add mode was promoted from the ARBtexture _env _add exten-
sion.

F.6 Texture Combine Environment Mode

The TEXTUREENV.MODHexture environment functio6OMBINEprovides a wide
range of programmable combiner functions using the incoming fragment color,
texture source color, texture constant color, and the result of the previous texture
environment stage as possible parameters.

Combiner operations include passthrough, multiplication, addition and biased
addition, subtraction, and linear interpolation of specified parameters. Different
combiner operations may be selected for RGB and A components, and the final
result may be scaled by 1, 2, or 4.

Texture combine was promoted from tGe ARBtexture _env _combine ex-
tension.

F.7 Texture Dot3 Environment Mode

The TEXTUREENV.MODE COMBIN&perations also provide three-component dot
products of specified parameters, with the resulting scalar value replicated into the
RGB or RGBA components of the output color. The dot product is performed
using pseudo-signed arithmetic to enable per-pixel lighting computations.

Texture DOT3 mode was promoted from fAe ARBtexture _env _dot3 ex-
tension.

F.8 Texture Border Clamp

The texture wrap paramet€LAMPTO.BORDERNode clamps texture coordinates
at all mipmap levels such that when the texture filter straddles an edge of the texture

Version 1.4 - July 24, 2002

FE9. TRANSPOSE MATRIX 271

image, the color returned is derived only from border texels. This behavior mirrors
the behavior of the texture edge clamp mode introduced by OpenGL 1.2.

Texture border clamp was promoted from the
GLARBtexture _border _clamp extension.

F.9 Transpose Matrix

New functions and tokens are added allowing application matrices stored in row
major order rather than column major order to be transferred to the implementa-
tion. This allows an application to use standard C-language 2-dimensional arrays
and have the array indices match the expected matrix row and column indexes.
These arrays are referred to as transpose matrices since they are the transpose of
the standard matrices passed to OpenGL.

Transpose matrix adds an interface for transfering data to and from the OpenGL
pipeline. It does not change any OpenGL processing or imply any changes in state
representation.

Transpose matrix was promoted from the ARBtranspose _matrix exten-
sion.

F.10 Acknowledgements

OpenGL 1.3 is the result of the contributions of many people. Following is a partial
list of the contributors, including the company that they represented at the time of
their contribution:

Adrian Muntianu, ATI

Al Reyes, 3dfx

Alain Bouchard, Matrox

Alan Commike, SGI

Alan Heirich, Compagq

Alex Herrera, SP3D

Allen Akin, VA Linux

Allen Gallotta, ATI

Alligator Descartes, Arcane

Andy Vesper, MERL

Andy Wolf, Diamond Multimedia

Axel Schildan, S3

Barthold Lichtenbelt, 3Dlabs

Benj Lipchak, Compagq

Bill Armstrong, Evans & Sutherland

Version 1.4 - July 24, 2002

272 APPENDIX FE. VERSION 1.3

Bill Clifford, Intel

Bill Mannel, SGI

Bimal Poddar, Intel

Bob Beretta, Apple

Brent Insko, NVIDIA

Brian Goldiez, UCF

Brian Greenstone, Apple
Brian Paul, VA Linux

Brian Sharp, GLSetup
Bruce D’Amora, IBM

Bruce Stockwell, Compagq
Chris Brady, Alt.software
Chris Frazier, Raycer

Chris Hall, 3dlabs

Chris Hecker, GLSetup
Chris Lane, Intel

Chris Thornborrow, PixelFusion
Christopher Fraser, IMG
Chuck Smith, Intelligraphics
Craig Dunwoody, SGI
Dairsie Latimer, PixelFusion
Dale Kirkland, 3Dlabs / Intergraph
Dan Brokenshire, IBM

Dan Ginsburg, ATI

Dan McCabe, S3

Dave Aronson, Microsoft
Dave Gosselin, ATI

Dave Shreiner, SGI

Dave Zenz, Dell

David Aronson, Microsoft
David Blythe, SGI

David Kirk, NVIDIA

David Story, SGI

David Yu, SGI

Deanna Hohn, 3dfx

Dick Coulter, Silicon Magic
Don Mullis, 3dfx

Eamon O Dea, PixelFusion
Edward (Chip) Hill, Pixelfusion
Eiji Obata, NEC

Version 1.4 - July 24, 2002

F10. ACKNOWLEDGEMENTS 273

Elio Del Giudice, Matrox
Eric Young, S3

Evan Hart, ATI

Fred Fisher, 3dLabs

Garry Paxinos, Metro Link
Gary Tarolli, 3dfx

George Kyriazis, NVIDIA
Graham Connor, IMG

Herb Kuta, Quantum3D
Howard Miller, Apple

Igor Sinyak, Intel

Jack Middleton, Sun

James Bowman, 3dfx

Jan C. Hardenbergh, MERL
Jason Mitchell, ATI

Jeff Weyman, ATI

Jeffrey Newquist, 3dfx

Jens Owen, Precision Insight
Jeremy Morris, 3Dlabs

Jim Bushnell, Pyramid Peak
John Dennis, Sharp Eye
John Metcalfe, IMG

John Stauffer, Apple

John Tynan, PixelFusion
John W. Polick, NEC

Jon Khazam, Intel

Jon Leech, SGI

Jon Paul Schelter, Matrox
Karl Hilleslad, NVIDIA
Kelvin Thompson

Ken Cameron, Pixelfusion
Ken Dyke, Apple

Ken Nicholson, SGI

Kent Lin, Intel

Kevin Lefebvre, HP

Kevin Martin, VA Linux

Kurt Akeley, SGI

Les Silvern, NEC

Mahesh Dandipani, Rendition
Mark Kilgard, NVIDIA

Version 1.4 - July 24, 2002

274 APPENDIX FE. VERSION 1.3

Martin Amon, 3dfx

Martina Sourada, ATI

Matt Lavoie, Pixelfusion

Matt Russo, Matrox

Matthew Papakipos, NVIDIA
Michael Gold, NVIDIA

Miriam Geller, SGI

Morgan Von Essen, Metro Link
Naruki Aruga, PFU

Nathan Tuck, Raycer Graphics
Neil Trevett, 3Dlabs

Newton Cheung, S3

Nick Triantos, NVIDIA

Patrick Brown, Intel

Paul Jensen, 3dfx

Paul Keller, NVIDIA

Paul Martz, HP

Paula Womack, 3dfx

Peter Doenges, Evans & Sutherland
Peter Graffagnino, Apple

Phil Huxley, 3Dlabs

Ralf Biermann, Elsa AG

Randi Rost, 3Dlabs

Renee Rashid, Micron

Rich Johnson, HP

Richard Pimentel, PTC
Richard Schlein, Apple

Rick Hammerstone, ATI

Rik Faith, VA Linux

Rob Glidden, Sun

Rob Wheeler, 3dfx

Shari Petersen, Rendition
Shawn Hopwood, SGI

Steve Glickman, Silicon Magic
Steve McGuigan, SGI

Steve Wright, Microsoft

Stuart Anderson, Metro Link
T. C. Zhao, MERL

Teri Morrison, HP

Thomas Fox, IBM

Version 1.4 - July 24, 2002

F10. ACKNOWLEDGEMENTS 275

Tim Kelley, Real 3D
Tom Frisinger, ATI
Victor Vedovato, Micron
Vikram Simha, MERL
Yanjun Zhang, Sun
Zahid Hussain, TI

Version 1.4 - July 24, 2002

Appendix G

Version 1.4

OpenGL version 1.4, released on July 24, 2002, is the fourth revision since the
original version 1.0. Version 1.4 is upward compatible with earlier versions, mean-
ing that any program that runs with a 1.3, 1.2, 1.1, or 1.0 GL implementation will
also run unchanged with a 1.4 GL implementation.

In addition to numerous additions to the classical fixed-function GL pipeline
in OpenGL 1.4, the OpenGL ARB also approved &RBvertex _program ex-
tension, which supports programmable vertex processing. Following are brief de-
scriptions of each addition to OpenGL 1.4; see Chaptdor a description of
ARBvertex _program .

G.1 Automatic Mipmap Generation

Setting the texture paramet@eENERATEMIPMAPto TRUEintroduces a side effect
to any modification of théevely, s. Of @ mipmap array, wherein all higher levels of
the mipmap pyramid are recomputed automatically by successive filtering of the
base level array.

Automatic mipmap generation was promoted from the
SGIS_generate _mipmap extension.

G.2 Blend Squaring

Blend squaring extends the set of supported source and destination blend functions
to permit squaring RGB and alpha values during blending. FUnc8®®&COLOR

and ONEMINUS SRCCOLORare added to the allowed source blending functions,
andDST.COLORaNdONEMINUS DST COLORare added to the allowed destination
blending functions.

276

G.3. CHANGES TO THE IMAGING SUBSET 277

Blend squaring was promoted from tB& NV blend _square extension.

G.3 Changes to the Imaging Subset

The subset of blending features described BigndEquation, BlendColor,

and theBlendFunc modesCONSTANICOLOR ONEMINUS CONSTANICOLOR
CONSTANRLPHA andONEMINUS CONSTANJALPHAare now supported. These
feature were available only in the optional imaging subset in versions 1.2 and 1.3
of the GL.

G.4 Depth Textures and Shadows

Depth textures define a new texture internal forrd&PTH normally used to repre-
sent depth values. Applications include image-based shadow casting, displacement
mapping, and image-based rendering.

Image-based shadowing is enabled with a new texture application mode de-
fined by the parametefFEXTURECOMPARBODE This mode enables comparing
texturer coordinates to depth texture values to generate a boolean result.

Depth textures and shadows were promoted fronGth@RBdepth _texture
andGL ARBshadow extensions.

G.5 Fog Coordinate

A new associated vertex and fragment datum, fige coordinatemay be used
in computing fog for a fragment, instead of using eye distance to the frag-
ment, by specifying the coordinate with tRegCoord commands and setting the
FOGCOORDINATESOURCHog parameter. Fog coordinates are particularly useful
in computing more complex fog models.

Fog coordinate was promoted from t3& EXT fog _coord extension.

G.6 Multiple Draw Arrays
Multiple primitives may be drawn in a single call using MeltiDrawArrays and
MultiDrawElements commants.

Multiple draw arrays was promoted from tl&_EXT.multi _draw _arrays
extension.

Version 1.4 - July 24, 2002

278 APPENDIX G. VERSION 1.4

G.7 Point Parameters

Point parameters defined by tReintParameterscommands support additional
geometric characteristics of points, allowing the size of a point to be affected by
linear or quadratic distance attenuation, and increasing control of the mapping from
point size to raster point area and point transparency. This effect may be used for
distance attenuation in rendering particles or light points.

Point parameters was promoted from tieARBpoint _parameters exten-
sion.

G.8 Secondary Color

The secondary color may be varied even when lighting is disabled by specifying it
as a vertex parameter with tisecondaryColorcommands.

Secondary color was promoted from t& EXT_secondary _color exten-
sion.

G.9 Separate Blend Functions

Blending capability is extended witBlendFuncSeparateto allow independent
setting of the RGB and alpha blend functions for blend operations that require
source and destination blend factors.

Separate blend functions was promoted from the
GLEXTblend func _separate extension.

G.10 Stencil Wrap

New stencil operationdNCR_WRARNADECRWRARllow the stencil value to wrap

around the range of stencil values instead of saturating to the minimum or maxi-

mum values on decrement or increment. Stencil wrapping is needed for algorithms

that use the stencil buffer for per-fragment inside-outside primitive computations.
Stencil wrap was promoted from ti@&_EXT_stencil _wrap extension.

G.11 Texture Crossbar Environment Mode
Texture crossbar extends the texture combine environment @OMBINEDY al-

lowing use of the texture color from different texture units as sources to the texture
combine function.

Version 1.4 - July 24, 2002

G.12. TEXTURE LOD BIAS 279

Texture environment crossbar was promoted from the
ARBtexture _env _crossbar extension.

G.12 Texture LOD Bias

The texture filter control paramet@dEXTURELODBIAS may be set to bias the

computed\ parameter used in texturing for mipmap level of detail selection, pro-

viding a means to blur or sharpen textures. LOD bias may be used for depth of field

and other special visual effects, as well as for some types of image processing.
Texture LOD bias was based on tBET_texture _lod _bias extension, with

the addition of a second per-texture object bias term.

G.13 Texture Mirrored Repeat

Texture mirrored repeat extends the set of texture wrap modes with the mode
MIRRORELREPEAT This effectively defines a texture map twice as large as the
original texture image in which the additional half, for each mirrored texture co-
ordinate, is a mirror image of the original texture. Mirrored repeat can be used
seamless tiling of a surface.

Texture mirrored repeat was promoted from the
ARBtexture _mirrored _repeat extension.

G.14 Window Raster Position

The raster position may be set directly to specified window coordinates with the

WindowPoscommands, bypassing the transformation applieRiasterPos Win-

dow raster position is particularly useful for imaging and other 2D operations.
Window raster position was promoted from tB& ARBwindow _pos exten-

sion.

G.15 Acknowledgements

OpenGL 1.4 is the result of the contributions of many people. Following is a partial
list of the contributors, including the company that they represented at the time
of their contribution. The editor especially thanks Bob Beretta and Pat Brown
for their sustained efforts in leading tWéRBvertex _program working group,
without which this critical extension could not have been defined and approved in
conjunction with OpenGL 1.4.

Version 1.4 - July 24, 2002

280 APPENDIX G. VERSION 1.4

Kurt Akeley, NVIDIA

Allen Akin

Bill Armstrong, Evans & Sutherland
Ben Ashbaugh, Intel

Chris Bentley, ATI

Bob Beretta, Apple

Daniel Brokenshire, IBM
Pat Brown, NVIDIA

Bill Clifford, Intel

Graham Connor, Videologic
Matt Craighead, NVIDIA
Suzy Deffeyes, IBM
Jean-Luc Dery, Discreet
Kenneth Dyke, Apple

Cass Everitt, NVIDIA

Allen Gallotta, ATI

Lee Gross, IBM

Evan Hart, ATI

Chris Hecker, Definition 6
Alan Heirich, Compaq / HP
Gareth Hughes, VA Linux
Michael | Gold, NVIDIA
Rich Johnson, HP

Mark Kilgard, NVIDIA

Dale Kirkland, 3Dlabs

David Kirk, NVIDIA
Christian Laforte, Alias—Wavefront
Luc Leblanc, Discreet

Jon Leech, SGI

Bill Licea-Kane, ATI
Barthold Lichtenbelt, 3Dlabs
Jack Middleton, Sun
Howard Miller, Apple
Jeremy Morris, 3Dlabs

Jon Paul Schelter, Matrox
Brian Paul, VA Linux / Tungsten Graphics
Bimal Poddar, Intel

Thomas Roell, Xi Graphics
Randi Rost, 3Dlabs

Jeremy Sandmel, ATI

Version 1.4 - July 24, 2002

G.15. ACKNOWLEDGEMENTS 281

John Stauffer, Apple

Nick Triantos, NVIDIA

Daniel Vogel, Epic Games
Mason Woo, World Wide Woo
Dave Zenz, Dell

Version 1.4 - July 24, 2002

Appendix H

ARB Extensions

OpenGL extensions that have been approved by the OpenGL Architectural Review
Board (ARB) are described in this chapter. These extensions are not required to be
supported by a conformant OpenGL implementation, but are expected to be widely
available; they define functionality that is likely to move into the required feature
set in a future revision of the specification.

In order not to compromise the readability of the core specification, ARB ex-
tensions are not integrated into the core language; instead, they are made available
online in theOpenGL Extension Regist(gs are a much larger number of vendor-
specific extensions, as well as extensions to GLX and WGL). Extensions are doc-
umented as changes to the Specification. The Registry is available on the World
Wide Web at URL

http://oss.sgi.com/projects/ogl-sample/registry/

Brief descriptions of ARB extensions are provided below.

H.1 Naming Conventions

To distinguish ARB extensions from core OpenGL features and from vendor-
specific extensions, the following naming conventions are used:

e A uniguename stringof the form"GL _ARBname" is associated with each
extension. If the extension is supported by an implementation, this string
will be present in th&XTENSIONSstring described in sectioh1.11

e All functions defined by the extension will have names of the fémc-
tionARB

282

http://oss.sgi.com/projects/ogl-sample/registry/

H.2. PROMOTING EXTENSIONS TO CORE FEATURES 283

e All enumerants defined by the extension will have names of the form
NAMEARB

H.2 Promoting Extensions to Core Features

ARB extensions can bpromotedto required core features in later revisions of
OpenGL. When this occurs, the extension specifications are merged into the core
specification. Functions and enumerants that are part of such promoted extensions
will have theARB affix removed.

GL implementations of such later revisions should continue to export the name
strings of promoted extensions in tAETENSIONSstring, and continue to support
the ARB-affixed versions of functions and enumerants as a transition aid.

For descriptions of extensions promoted to core features in OpenGL 1.3 and
1.4, see appendicésandG respectively.

H.3 Multitexture

The name string for multitexture GL ARBmultitexture . It was promoted to a
core feature in OpenGL 1.3.

H.4 Transpose Matrix

The name string for transpose matrix3s ARBtranspose _matrix . It was pro-
moted to a core feature in OpenGL 1.3.

H.5 Multisample

The name string for multisample &L ARBmultisample . It was promoted to a
core feature in OpenGL 1.3.

H.6 Texture Add Environment Mode

The name string for texture add modeds ARBtexture _env _add. It was pro-
moted to a core feature in OpenGL 1.3.

Version 1.4 - July 24, 2002

284 APPENDIX H. ARB EXTENSIONS

H.7 Cube Map Textures

The name string for cube mapping ®_ARBtexture _cube _map. It was pro-
moted to a core feature in OpenGL 1.3.

H.8 Compressed Textures

The name string for compressed textureSisARBtexture _compression . It
was promoted to a core feature in OpenGL 1.3.

H.9 Texture Border Clamp

The name string for texture border clamp3s ARBtexture _border _clamp . It
was promoted to a core feature in OpenGL 1.3.

H.10 Point Parameters

The name string for point parametersss ARBpoint _parameters . It was pro-
moted to a core features in OpenGL 1.4.

H.11 Vertex Blend

Vertex blending replaces the single modelview transformation with multiple vertex
units. Each unit has its own transform matrix and an associated current weight.
Vertices are transformed by all the enabled units, scaled by their respective weights,
and summed to create the eye-space vertex. Normals are similarly transformed by
the inverse transpose of the modelview matrices.

The name string for vertex blend®L_ARBvertex _blend .

H.12 Matrix Palette

Matrix palette extends vertex blending to include a palette of modelview matrices.
Each vertex may be transformed by a different set of matrices chosen from the
palette.

The name string for matrix palette @ ARBmatrix _palette

Version 1.4 - July 24, 2002

H.13. TEXTURE COMBINE ENVIRONMENT MODE 285

H.13 Texture Combine Environment Mode

The name string for texture combine mode&isARBtexture _env _combine . It
was promoted to a core feature in OpenGL 1.3.

H.14 Texture Crossbar Environment Mode

The name string for texture crossbaiGs ARBtexture _env _crossbar . It was
promoted to a core features in OpenGL 1.4.

H.15 Texture Dot3 Environment Mode

The name string for DOT3 iSL ARBtexture _env _dot3 . It was promoted to a
core feature in OpenGL 1.3.

H.16 Texture Mirrored Repeat

The name string for texture mirrored repeat is
GLARBtexture _mirrored _repeat . It was promoted to a core feature in
OpenGL 1.4.

H.17 Depth Texture

The name string for depth textureGs ARBdepth _texture . It was promoted to
a core feature in OpenGL 1.4.

H.18 Shadow

The name string for shadow &_ARBshadow . It was promoted to a core feature
in OpenGL 1.4.

H.19 Shadow Ambient

Shadow ambient extends the basic image-based shadow functionality by allowing
a texture value specified by tiEXTURECOMPARIEAIL VALUEARBtexture pa-
rameter to be returned when the texture comparison fails. This may be used for
ambient lighting of shadowed fragments and other advanced lighting effects.

The name string for shadow ambientis ARBshadow _ambient .

Version 1.4 - July 24, 2002

286 APPENDIX H. ARB EXTENSIONS

H.20 Window Raster Position

The name string for window raster positiond$_ ARBwindow _pos. It was pro-
moted to a core feature in OpenGL 1.4.

H.21 Vertex Programming

Application-defined/ertex programsnay be specified in a new low-level program-
ming language, replacing the standard fixed-function vertex transformation, light-
ing, and texture coordinate generation pipeline. Vertex programs enable many new
effects and are an important first step towards future graphics pipeline that will be
fully programmable in an unrestricted, high-level shading language.

The name string for vertex programmingARBvertex _program .

Version 1.4 - July 24, 2002

Index of OpenGL Commands

x_BIAS, 86, 235

x_SCALE, 86, 235

2D, 198 199 246

2 BYTES, 201

3D, 198 199

3D_COLOR,198 199
3D_COLORTEXTURE, 198 199
3.BYTES, 201
4D_COLORTEXTURE, 198 199
4 BYTES, 201

1,120 129, 148 209, 229
2,120,129, 209, 229
3,120, 129, 209, 229
4,120,129 209

ACCUM, 179

Accum, 179

ACCUM_BUFFERBIT, 177,215

ACTIVE_TEXTURE, 20, 37, 38, 44,
151, 190, 205, 206

ActiveTexture, 37, 158

ADD, 152 154, 155 179, 270

ADD _SIGNED, 155

ALL _ATTRIB_BITS, 214, 215

ALPHA, 86, 98, 109 110, 121-123
136, 137, 153 154, 157, 171,
183 184, 209 235, 236, 238
245, 255, 261

ALPHA12,122

ALPHA16,122

ALPHA4, 122

ALPHAS, 122

ALPHA _BIAS, 107

ALPHA_SCALE, 107,153

ALPHA_TEST, 166

AlphaFunc,166

ALWAYS, 166-168 233
AMBIENT, 55, 57
AMBIENT _AND DIFFUSE,55, 57
AND, 173

AND _INVERTED, 173
AND_REVERSE,173
Antialiasing,77
ARB_textureenv.crossbar279
ARB_texturemirroredrepeat279
ARB _vertexprogram,276, 279 286
AreTexturesResident,51, 202
ArrayElement]19, 25-27, 200
AUTO_NORMAL, 191

AUXi, 175

AUXn, 175,182

AUXO0, 175 182

BACK, 54, 56, 57, 77, 78, 80, 175, 182,
206, 227

BACK_LEFT, 175 182

BACK_RIGHT, 175,182

Begin,12, 13, 15-20, 25-27, 31, 59, 70,
74,77,80,192 193 198

BGR, 98, 183 184

BGRA, 98, 101, 104, 183 259

BindTexture, 149, 150

BITMAP, 79, 87, 90, 97, 104, 117, 184,
209

Bitmap,117

BITMAP_TOKEN, 199

BLEND, 152, 154, 169,173

BlendColor,170, 277

BlendEquation169, 277

BlendFunc,170, 277

BlendFuncSeparaté,/0, 278

288

BLUE, 86, 98, 183, 184, 235 236, 238
245

BLUE_BIAS, 107

BLUE_SCALE, 107

BYTE, 24, 97, 184, 185, 201

C3F.V3F, 28, 29

C4F.N3F_V3F, 28, 29

C4UB.V2F, 28, 29

C4UB.V3F, 28, 29

CallList, 19, 200, 201

CallLists, 19, 200, 201

CCW, 53, 227

CLAMP, 137,138 142

CLAMP_TO_BORDER,137, 139,270

CLAMP_TO_EDGE,137, 139, 140, 142,
260

CLEAR, 173

Clear,177,178

ClearAccum,178

ClearColor, 177

ClearDepth178

ClearIndex,177

ClearStencil 178

CLIENT_ACTIVE_TEXTURE, 25, 205,
206

CLIENT_ALL _ATTRIB_BITS, 214, 215

CLIENT_PIXEL_STOREBIT, 215

CLIENT_VERTEX_ARRAY _BIT, 215

ClientActiveTexture 19, 25, 202

CLIP_PLANE:, 42, 43

CLIP_PLANEDO, 43

ClipPlane 42

COEFF,207

COLOR,33, 37, 38,89, 92, 93,128 187

Color, 19, 21, 47,60

Color3,21

Color4,21

COLORARRAY, 24, 30

COLORARRAY _POINTER,213

COLORBUFFERBIT, 177,178 215

COLORINDEX, 79, 87, 90, 97, 98,
108 117,183 187, 208, 209

COLOR.INDEXES,55, 58

COLORLOGIC.OP,173

INDEX

COLORMATERIAL, 54,57
COLORMATRIX, 210
COLORMATRIX _STACK_DEPTH,
210
COLOR.SUM, 160
COLOR.TABLE, 88, 90, 108
COLOR.TABLE_ALPHA_SIZE, 210
COLOR.TABLE_BIAS, 87, 88, 210
COLOR.TABLE_BLUE_SIZE, 210
COLOR.TABLE_FORMAT, 210
COLOR.TABLE_GREENSIZE, 210
COLOR.TABLE_INTENSITY_SIZE,
210
COLOR.TABLE_LUMINANCE _SIZE,
210
COLOR.TABLE_RED.SIZE, 210
COLOR.TABLE_SCALE,87-89, 210
COLOR.TABLE_WIDTH, 210
ColorMask,176, 177
ColorMaterial,54, 56, 57, 191, 252, 257
ColorPointer,19, 23, 24, 30, 202
ColorSubTable34, 89
ColorTable 84, 86,88-90, 113 114, 202
ColorTableParametesg3
ColorTableParameterf@7
Colorub,60
Colorui, 60
Colorus,60
COMBINE, 152 153 155 158 270,
278
COMBINE_ALPHA, 152, 153 155, 156
COMBINE_RGB, 152, 153 155, 156
COMPARER_TO_TEXTURE, 137,
157
COMPILE, 200, 252
COMPILE.AND _EXECUTE, 200, 201
COMPRESSEDALPHA, 123
COMPRESSEDINTENSITY, 123
COMPRESSEDLUMINANCE, 123
COMPRESSEDLUMINANCE _ALPHA,
123
COMPRESSEDRGB, 123
COMPRESSEDRGBA, 123
COMPRESSEDTEXTURE_FORMATS,
120

Version 1.4 - July 24, 2002

INDEX

CompressedTexlmage34
CompressedTexlmagelD33 134
CompressedTexlmage2D33 134
CompressedTexlmage3D33 134
CompressedTexSublmagelT®4, 135
CompressedTexSublmage2®4, 135
CompressedTexSublmage3®4, 135
CONSTANT, 153 156, 232
CONSTANTALPHA, 171, 277
CONSTANTATTENUATION, 55
CONSTANT.BORDER,111, 112
CONSTANT.COLOR, 171, 277
CONVOLUTION_1D, 91, 93, 109, 126
211
CONVOLUTION_2D, 90-92, 109, 125
211
CONVOLUTION_BORDER COLOR,
111,211
CONVOLUTION_.BORDERMODE,
111,211
CONVOLUTION_FILTER_BIAS,
90-92, 211
CONVOLUTION_FILTER_SCALE,
90-93, 211
CONVOLUTION_FORMAT, 211
CONVOLUTION_HEIGHT, 211
CONVOLUTION_WIDTH, 211
ConvolutionFilter1D 84, 91-93
ConvolutionFilter2D 84, 90-93
ConvolutionParamete®l, 111
ConvolutionParameterf@0, 91, 111
ConvolutionParameterig2, 111
COPY, 173 233
COPY.INVERTED, 173
COPY_PIXEL_TOKEN, 199
CopyColorSubTableg9
CopyColorTable88, 89
CopyConvolutionFilter1D93
CopyConvolutionFilter2D92
CopyPixels,83, 85, 88, 89, 92, 93, 109,
128 180, 184, 186, 187, 197
CopyTeximagelD109 129, 130, 144
CopyTeximage2D]09, 128-130, 144
CopyTeximage3D130

289

CopyTexSublmagelD]109, 129 130,
132

CopyTexSublmage2,09, 129-132

CopyTexSublmage3D109, 129 130,
132

CULL _FACE, 78

CullFace,77, 78, 82

CURRENTBIT, 215

CURRENT.RASTERTEXTURE.COORDS,
44,251

CURRENT.TEXTURE.COORDS,20

Cw, 53

DECAL, 152 154

DECR,167

DECRWRAP, 167, 278

DeleteLists202

DeleteTexturesl 50, 202

DEPTH, 87, 91, 94, 95, 128 187, 235,
277

DEPTH.BIAS, 86, 107

DEPTHBUFFERBIT, 177,178 215

DEPTH.COMPONENT,87, 90, 97, 98,
120-122 157, 180, 183 187,
208

DEPTH.COMPONENT16,122

DEPTH.COMPONENT24,122

DEPTH.COMPONENT32,122

DEPTH.SCALE, 86, 107

DEPTH.TEST, 168

DEPTHTEXTURE.MODE, 137, 148§
157

DepthFunc168

DepthMask,176, 177

DepthRange33, 45, 205, 252

DIFFUSE,55, 57

Disable, 38, 41, 43, 48, 54, 65, 67, 70,
73, 77, 80, 82, 113-115, 158
160, 165-169, 172, 173 190,
191

DisableClientStatel9, 24, 25, 28, 30,
202

DITHER, 172

DOMAIN, 207

DONT_CARE, 203 241

Version 1.4 - July 24, 2002

290

DOT3.RGB, 155

DOT3.RGBA, 155

DOUBLE, 24

DRAW_PIXEL_TOKEN, 199

DrawArrays,25, 26, 200

DrawBuffer,174-178

DrawElements26-28, 200, 261

DrawPixels,79, 83-85, 87, 90, 95-100,
104, 106, 109, 116, 117, 119
180, 184,187, 197

DrawRangeElement&y7, 200, 244

DSTALPHA, 171

DST.COLOR,171, 276

EDGE FLAG_ARRAY, 24, 28

EDGE FLAG_ARRAY _POINTER,213

EdgeFlag,18, 19

EdgeFlagPointed 9, 23, 24, 202

EdgeFlagv;,18

EMISSION,55, 57

Enable 38, 41, 43, 48, 54, 65, 67, 70, 73,
77,80, 82,113-115, 158 160,
165-169, 172 173 190 191,
204

ENABLE_BIT, 215

EnableClientStatel,9, 24, 25, 30, 202

End, 12, 13, 1520, 25-27, 31, 59, 70,
77,80,192 193 198

EndList,200

EQUAL, 166-168

EQUIV, 173

EVAL _BIT, 215

EvalCoord,19, 190, 191

EvalCoord1,191-193

EvalCoord1d;192

EvalCoord1f,192

EvalCoord2,191-193

EvalMesh1,192

EvalMesh2,192 193

EvalPoint,19

EvalPoint1,193

EvalPoint2,193

EXP, 161, 162 224

EXP2,161

EXT_bgra,259

INDEX

EXT _blendcolor, 263
EXT_blendlogic_op, 255
EXT_blendminmax,263

EXT _blendsubtract263

EXT _color_subtable262

EXT _color_table,262
EXT_convolution,262

EXT _copy.texture,256
EXT_draw rangeelements261
EXT_histogram 263
EXT_packedpixels,260
EXT_polygonoffset, 255

EXT _rescalenormal,260

EXT _separatespecularcolor, 260
EXT _subtexture256

EXT _texture,255 256

EXT texture3D,259

EXT _texturelod_bias,279

EXT _textureobject,256

EXT _vertexarray,254
EXTENSIONS,85, 213 214, 282, 283
EYE_LINEAR, 40-42, 206, 232
EYE_PLANE, 40, 41

FALSE, 18, 19, 50, 52, 84, 86, 94, 95,
104, 107, 115, 116, 137, 148,
151, 166, 182, 205, 209, 212,
230

FASTEST,203

FEEDBACK, 195-197, 253

FEEDBACK BUFFERPOINTER,213

FeedbackBuffer] 96, 197, 202

FILL, 80-83, 192, 227, 252, 255

Finish,202, 203 251

FLAT, 59, 252

FLOAT, 24, 29, 30, 97, 184, 185, 201,
221,222

Flush,202, 203 251

FOG, 160

Fog,160, 161

FOGABIT, 215

FOG.COLOR,161

FOG.COORDINATE, 160, 161

FOG.COORDINATE ARRAY, 24, 28

Version 1.4 - July 24, 2002

INDEX

FOG.COORDINATE.SOURCE 44, 45,
161, 162 277

FOG.DENSITY, 161

FOGEND, 161

FOG.HINT, 203

FOG.INDEX, 161

FOG.MODE, 161, 162

FOG.START, 161

FogCoord,19, 21, 277

FogCoordPointer] 9, 23, 24, 202

FRAGMENT.DEPTH,160-162, 224

FRONT, 54, 57, 77, 78, 80, 175 182
206

FRONT.AND_BACK, 54, 56, 57, 77,
80,175

FRONT.LEFT, 175 182

FRONT.RIGHT, 175, 182

FrontFace53, 77

Frustum,35, 36, 252

FUNC_ADD, 169 172 233

FUNC_REVERSESUBTRACT,170

FUNC_SUBTRACT,170

GENERATEMIPMAP, 136, 137, 145
276

GENERATEMIPMAP_HINT, 203

GenlLists, 201, 202

GenTextures] 50, 202, 209

GEQUAL, 137, 157, 166-168

Get, 20, 33, 44, 202 204, 205

GetBooleanvl66, 204, 205, 216, 218

GetClipPlane206

GetColorTable90, 182 210

GetColorTableParametet]10

GetCompressedTexlmage, 133-135
203 207~209

GetConvolutionFilter182 211

GetConvolutionParameteil 1l

GetConvolutionParameteri9;l

GetDoublev204, 205,216,218

GetError,11

GetFloatv,166, 204, 205, 210, 216, 218

GetHistogram95, 182 211

GetHistogramParametexr] 2

291

Getlntegerv,27, 37, 65, 204, 205, 210,
216,218
GetLight,206
GetMap,206, 207
GetMaterial 206
GetMinmax,182, 212
GetMinmaxParamete?,13
GetPixelMap 206, 207
GetPointerv213
GetPolygonStipplel 82, 209
GetSeparableFiltef,82, 211
GetString,213 214
GetTexEnv206
GetTexGen206
GetTexlmage109 149 182, 208 210-
212
GetTexLevelParametez(6, 207
GetTexParamete?06, 207
GetTexParameterfiZ,49, 151
GetTexParameteriv,49, 151
GL_ARB_depthtexture,277, 285
GL_ARB _matrix_palette, 284
GL_ARB_multisample 269, 283
GL_ARB_multitexture,270, 283
GL_ARB_point parameters}78, 284
GL_ARB_shadow277, 285
GL_ARB_shadowambient,285
GL_ARB_textureborderclamp, 271,
284
GL_ARB_texturecompression?268 284
GL_ARB_texturecubemap,269, 284
GL_ARB_textureenv.add,270, 283
GL_ARB_textureenv.combine, 270,
285
GL_ARB _textureenv.crosshar285
GL_ARB_textureenv.dot3,270, 285
GL_ARB_texturemirroredrepeat285
GL_ARB_transposamatrix, 271, 283
GL_ARB_vertexblend,284
GL_ARB_window_pos,279, 286
GL_EXT _blendfunc_separate278
GL_EXT fog_coord,277
GL_EXT_multi_draw arrays,277
GL_EXT_secondarycolor,278
GL_EXT _stencilwrap,278

Version 1.4 - July 24, 2002

292

GL_NV_blendsquare277

glPointParametef6

GREATER,166-168

GREEN,86, 98, 183 184, 235,236,238
245

GREENBIAS, 107

GREENSCALE, 107

Hint, 203
HINT_BIT, 215
HISTOGRAM, 94, 95, 115,212
Histogram,94, 95, 115, 202
HISTOGRAM_ALPHA _SIZE, 212
HISTOGRAM.BLUE_SIZE, 212
HISTOGRAM_FORMAT, 212
HISTOGRAM_GREENSIZE, 212
HISTOGRAM_LUMINANCE _SIZE,
212
HISTOGRAM_RED_SIZE, 212
HISTOGRAM_SINK, 212
HISTOGRAM_WIDTH, 212
HP_convolutionbordermodes 262

INCR, 167
INCR_.WRAP, 167, 278
INDEX, 245
Index, 19, 21
INDEX_ARRAY, 24, 28
INDEX_ARRAY _POINTER,213
INDEX_LOGIC_OP,172
INDEX_OFFSET36, 107, 235
INDEX_SHIFT, 86, 107, 235
IndexMask,176, 177
IndexPointer]9, 23, 24, 202
InitNames,194
INT, 24, 97, 184, 185, 201
INTENSITY, 94, 95,109, 110, 121-123,
136, 137, 153 154, 157, 209,
236, 255
INTENSITY12,122
INTENSITY16,122
INTENSITY4, 122
INTENSITYS, 122
InterleavedArrays]9, 28, 29, 202
INTERPOLATE, 155

INDEX

INVALID _.ENUM, 12, 25, 37, 41, 53,
84, 90, 94, 95, 97, 129, 133
134, 149 208

INVALID _.OPERATION,12, 19, 84, 97,
100, 120, 128 132-135 150,
175 179, 180, 182 183 190,
194-196, 200, 207, 209

INVALID _VALUE, 12, 24-26, 28, 33,
36, 37, 54, 66, 67, 70, 83, 85—
87, 89, 91, 94, 120, 124, 125,
129-134, 145 151, 161, 165,
177,189 190, 192, 200, 207
209

INVERT, 167, 173

IsEnabled;165 202 204, 216, 218

IsList, 202

IsTexture, 202, 209

KEEP,167, 168 233

LEFT, 175, 182

LEQUAL, 137, 148 157, 166-168 230

LESS,166-168 233

Light, 53-55

LIGHT3, 54, 253

LIGHTO, 54

LIGHT MODEL_AMBIENT, 55

LIGHT _MODEL_COLOR CONTROL,
55

LIGHT _MODEL_LOCAL _VIEWER,
55

LIGHT _MODEL_TWO_SIDE, 55

LIGHTING, 49

LIGHTING _BIT, 215

LightModel, 53, 55

LINE, 80-82, 192, 193 227, 255

LINE_BIT, 215

LINE_LOOP,15

LINE_RESETTOKEN, 199

LINE_SMOOTH, 70, 76

LINE_SMOOTH.HINT, 203

LINE_STIPPLE,73

LINE_STRIP,15, 192

LINE_TOKEN, 199

LINEAR, 137, 142, 145, 146, 148 161

Version 1.4 - July 24, 2002

INDEX

LINEAR_ATTENUATION, 55

LINEAR_MIPMAP_LINEAR, 137, 144,
145

LINEAR_MIPMAP_NEAREST, 137,
144,145

LINES, 15, 74

LineStipple,73

Linewidth, 70

LIST_BIT, 215

ListBase,201, 202

LOAD, 179

Loadldentity,35

LoadMatrix, 34, 35

LoadMatrix[fd], 34

LoadName 194

LoadTransposeMatrix34

LoadTransposeMatrix[fd34

LOGIC.OP,173

LogicOp,173

LUMINANCE, 98, 105, 109, 110, 120~
123 136, 137, 148 153 154
157, 183 184, 209, 230 236,
238 255

LUMINANCE12, 122

LUMINANCE12 ALPHA12,122

LUMINANCE12 ALPHA4, 122

LUMINANCEL1S6, 122

LUMINANCE16_ALPHAL16, 122

LUMINANCE4, 122

LUMINANCE4 _ALPHA4, 122

LUMINANCEG6_ALPHA2, 122

LUMINANCES, 122

LUMINANCES8_ALPHAS, 122

LUMINANCE _ALPHA, 98, 105 109
110 120-123 153 154, 183
184,209

Map1,188-190, 205

MAP1_.COLORA4, 189

MAP1_INDEX, 189

MAP1_NORMAL, 189
MAP1.TEXTURE.COORD1, 189 191
MAP1.TEXTURE.COORD?2,189 191
MAP1.TEXTURE.COORDS, 189
MAP1_TEXTURE.COORDA4, 189

293

MAP1.VERTEX_3, 189

MAP1_VERTEX 4,189

Map2,189 190, 205

MAP2_VERTEX_3,191

MAP2_VERTEX 4,191

MAP_COLOR, 86, 107, 108

MAP_STENCIL, 86, 108

MAP_VERTEX_3, 191

MAP_VERTEX 4, 191

Map{12}, 190

MapGrid1,192

MapGrid2,192

Material, 19, 53-55, 58, 252

MatrixMode, 33

MAX, 170

MAX _3D_TEXTURE_SIZE, 124

MAX _ATTRIB_STACK_DEPTH, 214

MAX _CLIENT_ATTRIB_STACK_DEPTH,
214

MAX _COLORMATRIX _STACK_DEPTH,
210

MAX _CONVOLUTION_HEIGHT, 91,
211

MAX _CONVOLUTION_WIDTH, 91,
211

MAX _CUBE_.MAP_TEXTURE_SIZE,
124

MAX _ELEMENTS.INDICES, 28

MAX _ELEMENTS.VERTICES,?28

MAX _EVAL _ORDER,189, 190

MAX _PIXEL_MAP_TABLE, 86, 107

MAX _TEXTURE_LOD_BIAS, 140

MAX _TEXTURE_SIZE, 124

MAX _TEXTURE_UNITS, 13, 20, 23,
30, 216

MIN, 170

MINMAX, 95,115, 212 213

Minmax, 95, 116

MINMAX _FORMAT, 213

MINMAX _SINK, 213

MIRRORED.REPEAT,137, 139, 279

MODELVIEW, 33, 37, 38

MODELVIEW _MATRIX, 205

MODULATE, 152-155, 232

MULT, 179

Version 1.4 - July 24, 2002

294

MultiDrawArrays, 26, 277
MultiDrawElements27, 277
MULTISAMPLE, 65, 70, 76, 82, 116,
118 165 174
MULTISAMPLE _BIT, 215
MultiTexCoord, 19, 20, 25, 37
MultMatrix, 34, 35
MultMatrix[fd], 35
MultTransposeMatrix34
MultTransposeMatrix[fd] 35

N3F_V3F, 28, 29

NAND, 173

NEAREST,137, 142, 145, 146, 157

NEAREST.MIPMAP_LINEAR, 137,
144-146, 148

NEAREST.MIPMAP_NEAREST, 137,
144-146, 157

NEVER, 166-168

NewList, 200, 201

NICEST, 203

NO_ERROR,11

NONE, 137, 148 157, 174-176, 178
230

NOOP,173

NOR, 173

Normal,19, 21

Normal3,8, 20

Normal3d,8

Normal3dv,8

Normal3f,8

Normal3fv,8

NORMAL _ARRAY, 24, 30

NORMAL_ARRAY _POINTER,213

NORMAL_MAP, 40, 41, 269

NORMALIZE, 38

NormalPointer]19, 23, 24, 30, 202

NOTEQUAL, 166-168

NUM_COMPRESSEDTEXTURE_ FORMATS,

120

OBJECTLINEAR, 4042, 206
OBJECTPLANE, 40, 41
ONE, 171,172 233

INDEX

ONE_MINUS_CONSTANT.ALPHA,
171, 277

ONE_MINUS_CONSTANT.COLOR,
171, 277

ONE_MINUS_DST-ALPHA, 171

ONE_MINUS_DST.COLOR, 171, 276

ONE.MINUS_SRCALPHA, 156,171

ONE_.MINUS_SRCCOLOR, 156, 171,
276

OPERANDN_ALPHA, 153 156, 158

OPERANDN_RGB, 153 156, 158

OR,173

OR.INVERTED, 173

ORREVERSE 173

ORDER,207

Ortho, 35, 36, 252

OUT_OF.MEMORY, 11, 12, 200

PACK_ALIGNMENT, 182, 235
PACK_IMAGE _HEIGHT, 182, 208, 235
PACK_LSB_FIRST, 182, 235
PACK_.ROW_LENGTH, 182 235
PACK_SKIP_.IMAGES, 182 208, 235
PACK_SKIP_PIXELS, 182, 235
PACK_SKIP_.ROWS,182, 235
PACK_SWAPBYTES, 182, 235
PASSTHROUGH.TOKEN, 199
PassThrougHh.98
PERSPECTIVECORRECTIONHINT,
203
PIXEL_.MAP_A_TO_A, 87,107
PIXEL_.MAP_B_TO_B, 87, 107
PIXEL_.MAP_G_TO_G, 87, 107
PIXEL_MAP_I_TO_A, 87, 108
PIXEL_MAP_I_TO_B, 87,108
PIXEL_MAP_I_TO_G, 87, 108
PIXEL_.MAP_I_TO.I, 87, 108
PIXEL_.MAP_I_TO_R, 87, 108
PIXEL_.MAP_R_.TO_R, 87, 107
PIXEL_.MAP_S.TO_S, 87, 108
PIXEL_.MODE_BIT, 215
PixelMap,83, 85-87, 187
PixelStore 19, 83-85, 182, 187, 202
PixelTransfer83, 85, 86, 113 187
PixelZoom,106, 116

Version 1.4 - July 24, 2002

INDEX

POINT, 80-82, 192, 193 227, 255

POINT.BIT, 215

POINT_DISTANCE_ATTENUATION,
67

POINT_FADE_THRESHOLD SIZE, 67

POINT_SIZE.MAX, 67

POINT_SIZE MIN, 67

POINT_.SMOOQOTH,67, 70

POINT_.SMOOTHHINT, 203

POINT_TOKEN, 199

PointParameterg,78

POINTS,15, 192

PointSize 66

POLYGON,16, 18

POLYGONBIT, 215

POLYGONOFFSETFILL, 82

POLYGON.OFFSETLINE, 82

POLYGON.OFFSETPOINT, 82

POLYGON.SMOOTH, 77, 82

POLYGON.SMOOTHHINT, 203

POLYGON.STIPPLE,80

POLYGON.STIPPLEBIT, 215

POLYGON.TOKEN, 199

PolygonMode 76, 80-83, 195 197

PolygonOffset81

PolygonStipple79, 84

PopAttrib,214, 216, 253

PopClientAttrib,19, 202, 214, 216

PopMatrix,38

PopName194

POSITION,55, 206

POST.COLORMATRIX _z_BIAS, 86

POSTCOLORMATRIX _z_SCALE,
86

POST.COLORMATRIX _ALPHA_BIAS,
114

POSTCOLORMATRIX _ALPHA _SCALE,
114

POST.COLORMATRIX BLUE BIAS,
114

POST.COLORMATRIX BLUE_SCALE,
114

POST.COLORMATRIX_COLOR.TABLE,
88,114

295

POST.COLORMATRIX _GREENBIAS,
114
POST.COLORMATRIX _GREENSCALE,
114
POST.COLOR MATRIX _RED_BIAS,
114
POST.COLORMATRIX _RED_SCALE,
114
POST.CONVOLUTION_z_BIAS, 86
POST.CONVOLUTION_z_SCALE, 86
POST.CONVOLUTION_ALPHA _BIAS,
113
POST.CONVOLUTION_ALPHA_SCALE,
113
POST.CONVOLUTION_BLUE_BIAS,
113
POST.CONVOLUTION_BLUE_SCALE,
113
POSTCONVOLUTION_COLORTABLE,
88,113
POST.CONVOLUTION_GREENBIAS,
113
POSTCONVOLUTION_.GREENSCALE,
113
POSTCONVOLUTION_RED_.BIAS,
113
POST.CONVOLUTION_RED_SCALE,
113
PREVIOUS,153 156, 232
PRIMARY_COLOR, 156
PrioritizeTextures]151
PROJECTIONZ33, 37,38
PROXY_COLORTABLE, 88, 90, 202
PROXY_HISTOGRAM, 94, 95 202
212
PROXY_POSTCOLORMATRIX _COLOR.TABLE,
88, 202
PROXY_POSTCONVOLUTION_.COLOR.TABLE,
88, 202
PROXY_TEXTURE.1D, 120, 126, 149,
202, 207
PROXY_TEXTURE.2D, 120, 125, 149,
202 207
PROXY_TEXTURE.3D, 119, 148 149,
202 207

Version 1.4 - July 24, 2002

296

PROXY_.TEXTURE_CUBE.MAP, 125
149, 202, 207

PushAttrib,214, 216

PushClientAttrib,19, 202 214, 216

PushMatrix,38

PushName] 94

Q. 40, 41, 206

QUAD_STRIP,17
QUADRATIC_ATTENUATION, 55
QUADS, 18

R, 40, 41, 206

R3.G3.B2,122

RasterPos}4, 195, 252 279

RasterPos2}4

RasterPos3}4

RasterPos44

ReadBuffer]182 187

ReadPixels,83, 85, 97, 98, 100, 109,
180-184, 187, 202, 208-210

Rect,30, 31, 77

RED, 86, 98, 183 184, 235 236, 238
245

RED_BIAS, 107

RED_SCALE, 107

REDUCE,111, 113 237

REFLECTIONMAP, 40, 41, 269

RENDER,195 196, 246

RENDERER,213

RenderMode]195-197, 202

REPEAT,137, 138, 142, 143 148, 230

REPLACE,152, 154, 155, 167

REPLICATEBORDER,111, 112

RESCALENORMAL, 38

ResetHistogran12

ResetMinmax213

RETURN,179

RGB, 98, 101, 104, 109, 110, 120-123
153 154, 171, 183 184, 209,
255

RGB10,122

RGB10A2, 122

RGB12,122

RGB16,122

INDEX

RGB4,122

RGB5,122

RGB5A1, 122

RGB8,122

RGB_SCALE, 153

RGBA, 89, 90, 93-95, 98, 101, 104, 109,
110 120-123 153 154, 183
187, 209, 236-239

RGBA12,122

RGBA16,122

RGBA2,122

RGBA4,122

RGBAS8, 122

RIGHT, 175, 182

Rotate 35, 252

S,40, 41, 206

SAMPLE ALPHA TO_COVERAGE,
165

SAMPLE ALPHA TO_ONE, 165 166

SAMPLE BUFFERS, 65, 70, 76, 82,
116,118 165 174,177,182

SAMPLE COVERAGE, 165, 166

SAMPLE_ COVERAGEINVERT, 165
166

SAMPLE_ COVERAGEVALUE, 165
166

SampleCoveragé,66

SAMPLES,65

Scale,35, 36, 252

Scissor165

SCISSORBIT, 215

SCISSORTEST, 165

SECONDARY.COLORARRAY, 24,
28

SecondaryColor 9, 21, 278

SecondaryColor1

SecondaryColorPointet9, 23, 24, 202

SELECT,195 196 253

SelectBuffer195 196 202

SELECTIONBUFFERPOINTER,213

SEPARABLE?2D, 92, 109 125 211

SeparableFilter2084, 92

SEPARATESPECULARCOLOR,51

SET,173

Version 1.4 - July 24, 2002

INDEX

SGl.color.matrix, 262
SGISgeneratemipmap,276
SGIS.multitexture,267
SGIStextureedgeclamp,261
SGlStexturelod, 261
ShadeModel59
SHININESS,55
SHORT, 24, 97, 184, 185, 201
SINGLE.COLOR,50, 51, 225
SMOOTH,59, 224
SOURCH_ALPHA, 153 156, 158
SOURCHL_RGB, 153 156, 158
SPECULAR,55, 57
SPHEREMAP, 40, 41, 269
SPOT.CUTOFF,55
SPOTDIRECTION,55, 206
SPOTEXPONENT,55
SRCALPHA, 153 156,171, 232
SRCALPHA_SATURATE, 171
SRCCOLOR,153 156,171, 232,276
STACK_.OVERFLOW, 12, 38,195 214
STACK_.UNDERFLOW, 12, 38, 194
214
STENCIL, 187
STENCILBUFFERBIT, 177,178 215
STENCILINDEX, 87, 90, 97, 98, 106,
119 180,182 183 187, 208
STENCILTEST, 167
StencilFunc167, 168 251
StencilMask,176, 177,180, 251
StencilOp,167, 168
SUBTRACT, 155

T, 40, 206

T2F_C3F.V3F, 28, 29
T2F_.C4F.N3F_V3F, 28, 29
T2F_C4UB_V3F, 28, 29
T2F_N3F.V3F, 28, 29
T2F_V3F, 28, 29
T4F_C4F.N3F_V4F, 28, 29
T4F.V4F, 28, 29
TABLE_TOO._LARGE, 12, 87,94
TexCoord,19, 20
TexCoord120
TexCoord220

297

TexCoord320

TexCoord4 20

TexCoordPointer] 9, 23-25, 30, 202

TexEnv,152 158

TexGen40, 41

TexImage, 130

TeximagelD,84, 109, 111, 121, 125
126, 128-130, 133 144, 149,
202

Texlmage2D,84, 109 111, 121, 125
126, 128-130, 133 144, 149
202

Texlmage3D,84, 119, 121, 124-126
128 130, 133 144, 148 149,
202, 208

TexParametef, 36

TexParameter][if]141, 145

TexParameterfl51

TexParameterfu 51

TexParameteril 51

TexParameterivi51

TexSublmage]l30

TexSublmagelDg4, 109, 129 130 132,
134

TexSublmage2Dg4, 109, 129-132 134

TexSublmage3Dg4, 129 130, 132 134

TEXTURE, 33, 37, 38, 153 156, 232

TEXTURE;, 20

TEXTUREDO,20, 38, 190, 197, 216, 221,
232

TEXTURE1,216

TEXTURE.zD, 229

TEXTURE_1D, 109 120, 126,129 130,
136, 149, 150, 158, 206-208

TEXTURE_2D, 120, 125,128 130, 136,
149, 150, 158 206-208

TEXTURE_3D, 119 130, 136, 149, 150,
158, 206-208

TEXTURE_ALPHA _SIZE, 207

TEXTURE.BASE LEVEL, 126, 136
137,145 148

TEXTURE.BIT, 214, 215

TEXTURE_BLUE_SIZE, 207

TEXTURE_.BORDER,134, 135, 207

TEXTURE.BORDERCOLOR, 136

Version 1.4 - July 24, 2002

298

137,144,148

TEXTURE.COMPAREFAIL VALUE _ARB,

285
TEXTURE.COMPAREFUNC, 137,

148 157
TEXTURE.COMPAREMODE, 137,

148 157,277
TEXTURE.COMPONENTS207

TEXTURE.COMPRESSEDMAGE _SIZE,

134,135 207, 209
TEXTURE.COMPRESSIONHINT,
203
TEXTURE.COORDARRAY, 24, 25
30

TEXTURE.COORDARRAY _POINTER,

213
TEXTURE.CUBE.MAP, 125, 136, 149,
150, 158 206, 207, 229
TEXTURE.CUBE.MAP_*, 125
TEXTURE.CUBE.MAP_NEGATIVE_X,
125,128 130, 138 207, 208
TEXTURE.CUBE.MAP_NEGATIVE.Y,
125,128 130, 138 207, 208
TEXTURE.CUBE.MAP_NEGATIVE_Z,
125,128 130 138 207, 208
TEXTURE.CUBE.MAP_POSITIVEX,
125,128 130 138 207, 208
TEXTURE.CUBE.MAP_POSITIVEYY,
125,128 130, 138 207, 208
TEXTURE.CUBE.MAP_POSITIVEZ,
125,128 130 138 207, 208
TEXTURE.DEPTH, 134 135 207
TEXTURE.DEPTHSIZE, 207
TEXTURE.ENV, 152, 206
TEXTURE.ENV_COLOR, 152
TEXTUREEENV_MODE, 152 153
158 270
TEXTUREFILTER.CONTROL, 152
206
TEXTURE.GEN-MODE, 40, 41
TEXTURE.GEN.Q, 41
TEXTURE.GENLR, 41
TEXTURE.GENS, 41
TEXTURE.GEN.T, 41
TEXTURE.GREENSIZE, 207

INDEX

TEXTUREHEIGHT, 134, 135, 207

TEXTURELINTENSITY_SIZE, 207

TEXTURE.INTERNAL _FORMAT,
134, 135, 207

TEXTURE.LOD_BIAS, 137, 140, 152,
279

TEXTURE_.LUMINANCE _SIZE, 207

TEXTURE.MAG _FILTER, 137, 146,
148 157

TEXTURE.MAX _LEVEL, 136, 137,
145, 148

TEXTURE.MAX _LOD, 136, 137, 141,
148

TEXTUREMIN _FILTER, 137 142
144, 146-148 157

TEXTURE.MIN _LOD, 136, 137, 141,
148

TEXTUREPRIORITY, 137,148,151

TEXTURE.RED_SIZE, 207

TEXTURE_RESIDENT,148, 151, 207

TEXTURE.WIDTH, 134, 135, 207

TEXTURE.WRAP.R, 137,138 143

TEXTURE.WRAP.S, 137, 138 142
143

TEXTURE.WRAP_T, 137, 138 142
143

TEXTUREN, 156, 158

TRANSFORMBIT, 215

Translate 35, 252

TRANSPOSECOLORMATRIX, 205,
210

TRANSPOSEMODELVIEW _MATRIX,
205

TRANSPOSEPROJECTIONMATRIX,
205

TRANSPOSETEXTURE_MATRIX,
205

TRIANGLE_FAN, 16

TRIANGLE_STRIP,16

TRIANGLES, 17,18

TRUE, 18, 19, 43, 50, 52, 84, 86, 94, 95,
136, 137, 145, 151, 166, 176,
182 202, 205,209, 212, 276

UNPACK_ALIGNMENT, 84, 99, 119

Version 1.4 - July 24, 2002

INDEX

235
UNPACK_IMAGE _HEIGHT, 84, 119
235
UNPACK_LSB_FIRST, 84, 104, 235
UNPACK_ROW_LENGTH, 84, 98, 99,

119 235

UNPACK_SKIP_.IMAGES, 84, 119
125 235

UNPACK_SKIP_PIXELS, 84, 99, 104
235

UNPACK_SKIP_.ROWS, 84, 99, 104
235

UNPACK_SWAPBYTES, 84, 98, 99,
235

UNSIGNED.BYTE, 24, 26, 29, 97, 101,
184,185 201

UNSIGNED.BYTE_2_3_.3_REV, 97, 99,
101, 185

UNSIGNED.BYTE_3.3.2, 97, 99, 101,
185

UNSIGNEDLINT, 24, 26, 97, 103 184
185 201

UNSIGNED.INT_10.10.10.2, 97, 99,
101, 103 185

UNSIGNED.INT_2_10_.10_10_REYV, 97,
99, 101, 103 185
UNSIGNED.INT_8.8.8.8, 97, 99, 101,
103 185
UNSIGNED.INT_8.8_.8_.8_REV, 97, 99,
101, 103 185
UNSIGNED_SHORT, 24, 26, 97, 102,
184, 185 201
UNSIGNED.SHORT.1.5.5.5_REYV, 97,
99, 101, 102, 185
UNSIGNED.SHORT4.4.4.4, 97, 99,
101, 102, 185
UNSIGNED.SHORT4.4_4_4 REV, 97,
99, 101, 102, 185
UNSIGNED.SHORT5.5.5.1, 97, 99,
101, 102, 185
UNSIGNED.SHORTS5.6.5, 97, 99,
101, 102, 185
UNSIGNED.SHORTS5.6.5.REV, 97,
99, 101, 102, 185

299

V2F, 28, 29

V3F, 28, 29

VENDOR, 213

VERSION, 213 214

Vertex, 7, 19, 20, 44, 191
Vertex2,20, 31

Vertex2sv,7

Vertex3,20

Vertex3f,7

Vertex4,20

VERTEX_ARRAY, 24, 30
VERTEX_ARRAY _POINTER,213
VertexPointer]19, 23, 24, 30, 202
Viewport, 33

VIEWPORT.BIT, 215

WGL_ARB_multisample 269
WindowPos45, 195, 279
WindowPos245
WindowPos345

XOR, 173

ZERO,167,171,172, 233

Version 1.4 - July 24, 2002

	Introduction
	Formatting of Optional Features
	What is the OpenGL Graphics System?
	Programmer's View of OpenGL
	Implementor's View of OpenGL
	Our View

	OpenGL Operation
	OpenGL Fundamentals
	Floating-Point Computation

	GL State
	GL Command Syntax
	Basic GL Operation
	GL Errors
	Begin/End Paradigm
	Begin and End Objects
	Polygon Edges
	GL Commands within Begin/End

	Vertex Specification
	Vertex Arrays
	Rectangles
	Coordinate Transformations
	Controlling the Viewport
	Matrices
	Normal Transformation
	Generating Texture Coordinates

	Clipping
	Current Raster Position
	Colors and Coloring
	Lighting
	Lighting Parameter Specification
	ColorMaterial
	Lighting State
	Color Index Lighting
	Clamping or Masking
	Flatshading
	Color and Texture Coordinate Clipping
	Final Color Processing

	Rasterization
	Invariance
	Antialiasing
	Multisampling

	Points
	Basic Point Rasterization
	Point Rasterization State
	Point Multisample Rasterization

	Line Segments
	Basic Line Segment Rasterization
	Other Line Segment Features
	Line Rasterization State
	Line Multisample Rasterization

	Polygons
	Basic Polygon Rasterization
	Stippling
	Antialiasing
	Options Controlling Polygon Rasterization
	Depth Offset
	Polygon Multisample Rasterization
	Polygon Rasterization State

	Pixel Rectangles
	Pixel Storage Modes
	The Imaging Subset
	Pixel Transfer Modes
	Rasterization of Pixel Rectangles
	Pixel Transfer Operations
	Pixel Rectangle Multisample Rasterization

	Bitmaps
	Texturing
	Texture Image Specification
	Alternate Texture Image Specification Commands
	Compressed Texture Images
	Texture Parameters
	Depth Component Textures
	Cube Map Texture Selection
	Texture Wrap Modes
	Texture Minification
	Texture Magnification
	Texture Completeness
	Texture State and Proxy State
	Texture Objects
	Texture Environments and Texture Functions
	Texture Comparison Modes
	Texture Application

	Color Sum
	Fog
	Antialiasing Application
	Multisample Point Fade

	Per-Fragment Operations and the Framebuffer
	Per-Fragment Operations
	Pixel Ownership Test
	Scissor Test
	Multisample Fragment Operations
	Alpha Test
	Stencil Test
	Depth Buffer Test
	Blending
	Dithering
	Logical Operation
	Additional Multisample Fragment Operations

	Whole Framebuffer Operations
	Selecting a Buffer for Writing
	Fine Control of Buffer Updates
	Clearing the Buffers
	The Accumulation Buffer

	Drawing, Reading, and Copying Pixels
	Writing to the Stencil Buffer
	Reading Pixels
	Copying Pixels
	Pixel Draw/Read State

	Special Functions
	Evaluators
	Selection
	Feedback
	Display Lists
	Flush and Finish
	Hints

	State and State Requests
	Querying GL State
	Simple Queries
	Data Conversions
	Enumerated Queries
	Texture Queries
	Stipple Query
	Color Matrix Query
	Color Table Query
	Convolution Query
	Histogram Query
	Minmax Query
	Pointer and String Queries
	Saving and Restoring State

	State Tables

	Invariance
	Repeatability
	Multi-pass Algorithms
	Invariance Rules
	What All This Means

	Corollaries
	Version 1.1
	Vertex Array
	Polygon Offset
	Logical Operation
	Texture Image Formats
	Texture Replace Environment
	Texture Proxies
	Copy Texture and Subtexture
	Texture Objects
	Other Changes
	Acknowledgements

	Version 1.2
	Three-Dimensional Texturing
	BGRA Pixel Formats
	Packed Pixel Formats
	Normal Rescaling
	Separate Specular Color
	Texture Coordinate Edge Clamping
	Texture Level of Detail Control
	Vertex Array Draw Element Range
	Imaging Subset
	Color Tables
	Convolution
	Color Matrix
	Pixel Pipeline Statistics
	Constant Blend Color
	New Blending Equations

	Acknowledgements

	Version 1.2.1
	Version 1.3
	Compressed Textures
	Cube Map Textures
	Multisample
	Multitexture
	Texture Add Environment Mode
	Texture Combine Environment Mode
	Texture Dot3 Environment Mode
	Texture Border Clamp
	Transpose Matrix
	Acknowledgements

	Version 1.4
	Automatic Mipmap Generation
	Blend Squaring
	Changes to the Imaging Subset
	Depth Textures and Shadows
	Fog Coordinate
	Multiple Draw Arrays
	Point Parameters
	Secondary Color
	Separate Blend Functions
	Stencil Wrap
	Texture Crossbar Environment Mode
	Texture LOD Bias
	Texture Mirrored Repeat
	Window Raster Position
	Acknowledgements

	ARB Extensions
	Naming Conventions
	Promoting Extensions to Core Features
	Multitexture
	Transpose Matrix
	Multisample
	Texture Add Environment Mode
	Cube Map Textures
	Compressed Textures
	Texture Border Clamp
	Point Parameters
	Vertex Blend
	Matrix Palette
	Texture Combine Environment Mode
	Texture Crossbar Environment Mode
	Texture Dot3 Environment Mode
	Texture Mirrored Repeat
	Depth Texture
	Shadow
	Shadow Ambient
	Window Raster Position
	Vertex Programming

	Index of OpenGL Commands

